CIESC Journal ›› 2025, Vol. 76 ›› Issue (6): 2701-2713.DOI: 10.11949/0438-1157.20241495
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Qingping ZHAO1,2,3(
), Min ZHANG1(
), Hui ZHAO4(
), Gang WANG3,4, Yongfu QIU1
Received:2024-12-24
Revised:2025-01-13
Online:2025-07-09
Published:2025-06-25
Contact:
Min ZHANG, Hui ZHAO
赵清萍1,2,3(
), 张敏1(
), 赵辉4(
), 王刚3,4, 邱永福1
通讯作者:
张敏,赵辉
作者简介:赵清萍(1997—),女,硕士研究生,2353836671@qq.com
基金资助:CLC Number:
Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate[J]. CIESC Journal, 2025, 76(6): 2701-2713.
赵清萍, 张敏, 赵辉, 王刚, 邱永福. 乙烯氢甲酯化合成丙酸甲酯的氢键作用机制及反应动力学研究[J]. 化工学报, 2025, 76(6): 2701-2713.
Add to citation manager EndNote|Ris|BibTeX
| 序号 | 催化剂组成 | 反应温度/℃ | 反应压力/MPa | 转化频率TOF/h-1 | 选择性/% | 产率/% |
|---|---|---|---|---|---|---|
| 1[ | Pd(OAc)2∶PPh3∶p-TsOH=1∶30∶20 | 115 | 4.5 | 5000 | 98 | — |
| 2[ | Pd(PPh3)2(TsO)2∶PPh3∶p-TsOH=1∶6∶8 | 120 | 4 | 5700 | — | — |
| 3[ | cis-[Pd(SO4)(PPh3)2] ∶PPh3∶H2SO4=1∶107∶8 | 100 | 0.6 | 2168 | — | 98 |
| 4[ | Pd(OAc)2∶TPP∶MSA∶SATA=1∶10∶5∶60 | 100 | 2 | — | 98 | — |
| 5[ | Pd(OAc)2∶dtbpp∶MSA =1∶1.2∶2.5 | 120 | 4 | 25000 | 97.4 | — |
| 6[ | Pd(acac)2∶pytbpx∶p-TsOH=1∶1.2∶2.5 | 120 | 4 | — | 99 | 97 |
| 7[ | Pd(acac)2∶pytbpf∶p-TsOH=1∶2∶16 | 100 | 3 | 46000 | 99 | — |
| 8[ | Pd(OAc)2∶dtbpx∶P-[VSpIm][CH3C6H4SO3]0.5=1∶5∶4 | 80 | — | — | 100 | 94.4 |
| 9[ | Pd(OAc)2∶dtbpx∶[SBMI][p-TsOH]=1∶5∶77.9 | 80 | 2.2 | — | — | 99 |
| 10[ | Pd(OAc)2∶dtbpx∶SiO2-[SBMI][p-TsOH] =1∶10∶25.6 | 85 | 0.5 | 650 | — | — |
| 本工作 | Pd(OAc)2∶dtbpx∶p-TsOH=1∶2∶5 | 60 | 2 | 9359 | 约100 | — |
Table 1 Comparison of relevant literatures
| 序号 | 催化剂组成 | 反应温度/℃ | 反应压力/MPa | 转化频率TOF/h-1 | 选择性/% | 产率/% |
|---|---|---|---|---|---|---|
| 1[ | Pd(OAc)2∶PPh3∶p-TsOH=1∶30∶20 | 115 | 4.5 | 5000 | 98 | — |
| 2[ | Pd(PPh3)2(TsO)2∶PPh3∶p-TsOH=1∶6∶8 | 120 | 4 | 5700 | — | — |
| 3[ | cis-[Pd(SO4)(PPh3)2] ∶PPh3∶H2SO4=1∶107∶8 | 100 | 0.6 | 2168 | — | 98 |
| 4[ | Pd(OAc)2∶TPP∶MSA∶SATA=1∶10∶5∶60 | 100 | 2 | — | 98 | — |
| 5[ | Pd(OAc)2∶dtbpp∶MSA =1∶1.2∶2.5 | 120 | 4 | 25000 | 97.4 | — |
| 6[ | Pd(acac)2∶pytbpx∶p-TsOH=1∶1.2∶2.5 | 120 | 4 | — | 99 | 97 |
| 7[ | Pd(acac)2∶pytbpf∶p-TsOH=1∶2∶16 | 100 | 3 | 46000 | 99 | — |
| 8[ | Pd(OAc)2∶dtbpx∶P-[VSpIm][CH3C6H4SO3]0.5=1∶5∶4 | 80 | — | — | 100 | 94.4 |
| 9[ | Pd(OAc)2∶dtbpx∶[SBMI][p-TsOH]=1∶5∶77.9 | 80 | 2.2 | — | — | 99 |
| 10[ | Pd(OAc)2∶dtbpx∶SiO2-[SBMI][p-TsOH] =1∶10∶25.6 | 85 | 0.5 | 650 | — | — |
| 本工作 | Pd(OAc)2∶dtbpx∶p-TsOH=1∶2∶5 | 60 | 2 | 9359 | 约100 | — |
Fig.4 (a) 1H NMR chemical shift of hydroxyl hydrogen in methanol under action of methanol and acid promoter; (b) Activated dehydrogenation of methanol by hydrogen bonding between acid and hydroxyl hydrogen of methanol
Fig.10 Effect of reaction condition on hydroesterification of ethylene: (a) stirring speed; (b) reaction pressure; (c) Pd(OAc)2 concentration; (d) water content
| [1] | Shariati A, Florusse L J, Peters C J. Solubility of ethylene in methyl propionate[J]. Fluid Phase Equilibria, 2015, 387: 143-145. |
| [2] | Cavinato G, Toniolo L. Carbonylation of ethene catalysed by Pd(Ⅱ)-phosphine complexes[J]. Molecules, 2014, 19(9): 15116-15161. |
| [3] | Fan H, Qi L, Wang H Y. Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate[J]. Solid State Ionics, 2017, 300: 169-174. |
| [4] | 赵俊丽, 李保鹏, 蔡洪波. 材料对锂离子电池低温性能影响研究[J]. 电源技术, 2023, 47(8): 1028-1032. |
| Zhao J L, Li B P, Cai H B. Influence of materials on low-temperature performance of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2023, 47(8): 1028-1032. | |
| [5] | Guo Z J, Zhang G L, Wang L, et al. Fe-modified Cs–P/γ-Al2O3 catalyst for synthesis of methyl methacrylate from methyl propionate and formaldehyde[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3334-3341. |
| [6] | Liu J Y, Li Z X, Bian Y H, et al. Promotional effect of Ti on catalytic performance of Cs/Ti-SiO2 for conversion of methyl propionate and formaldehyde to methyl methacrylate[J]. Chemical Engineering Science, 2024, 283: 119441. |
| [7] | Feng C X, Liu J Y, Zhao K, et al. Influence of pore structure on catalytic performance of Cs-Zr/SiO2 catalyst for methyl methacrylate synthesis from methyl propionate and formaldehyde[J]. Chemical Engineering Science, 2025, 301: 120760. |
| [8] | Wang Y N, Yan R Y, Lv Z P, et al. Lanthanum and cesium-loaded SBA-15 catalysts for MMA synthesis by aldol condensation of methyl propionate and formaldehyde[J]. Catalysis Letters, 2016, 146(9): 1808-1818. |
| [9] | 李斌, 解铭, 齐翔, 等. 乙烯路线制备甲基丙烯酸甲酯研究进展[J]. 化工进展, 2019, 38(4): 1739-1745. |
| Li B, Xie M, Qi X, et al. Progress in preparation of methyl methacrylate by ethylene route[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1739-1745. | |
| [10] | Moraru M D, Bildea C S, Kiss A A. Novel eco-efficient process for methyl methacrylate production[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1290-1301. |
| [11] | 韩健, 徐玲玲. MMA基混凝土修补材料的研究进展[J]. 中国胶粘剂, 2021, 30(1): 68-72. |
| Han J, Xu L L. Research progress of MMA-based concrete repair material[J]. China Adhesives, 2021, 30(1): 68-72. | |
| [12] | Kara A, Erdem B. Synthesis, characterization and catalytic properties of sulfonic acid functionalized magnetic-poly(divinylbenzene-4-vinylpyridine) for esterification of propionic acid with methanol[J]. Journal of Molecular Catalysis A: Chemical, 2011, 349(1/2): 42-47. |
| [13] | 李柏春, 张静雅, 王凤竹, 等. 酯化法合成丙酸甲酯的动力学研究[J]. 石油化工, 2017, 46(12): 1468-1472. |
| Li B C, Zhang J Y, Wang F Z, et al. Reaction kinetics of synthesized methyl propionate by esterification[J]. Petrochemical Technology, 2017, 46(12): 1468-1472. | |
| [14] | 张勇, 吴玉塘, 贾朝霞. 甲酸甲酯与乙烯加氢酯化合成丙酸甲酯[J]. 天然气化工, 1996, 21(1): 5-8, 1. |
| Zhang Y, Wu Y T, Jia Z X. Preparation of methyl propionate from ethylene and methyl formate by hydroesterification[J]. Natural Gas Chemical Industry, 1996, 21(1): 5-8, 1. | |
| [15] | Jenner G, Ben Taleb A. Ruthenium catalysed ethylene: methyl formate reactions. Synthesis of propanol and ketones[J]. Journal of Molecular Catalysis, 1994, 91(1): 31-43. |
| [16] | García-Suárez E J, Khokarale S G, van Buu O N, et al. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media[J]. Green Chem, 2014, 16(1): 161-166. |
| [17] | Xu J X, Yuan Y, Wu X F. Ethylene as a synthon in carbonylative synthesis[J]. Coordination Chemistry Reviews, 2023, 477: 214947. |
| [18] | Clegg W, Eastham G R, Elsegood M R J, et al. Synthesis and reactivity of palladium hydrido-solvento complexes, including a key intermediate in the catalytic methoxycarbonylation of ethene to methyl propanoate[J]. Journal of the Chemical Society, Dalton Transactions, 2002(17): 3300-3308. |
| [19] | 王鲁明, 李增喜. 丙酸甲酯催化合成过程研究进展[J]. 工程研究——跨学科视野中的工程, 2024, 16(5): 481-499. |
| Wang L M, Li Z X. Research progress on the catalytic synthesis process of methyl propionate[J]. Journal of Engineering Studies, 2024, 16(5): 481-499. | |
| [20] | Yang J, Yuan Y Z. Promoting effect of lewis acid on the olefin hydroesterification catalyzed by triphenylphosphine-palladium complex[J]. Catalysis Letters, 2009, 131(3): 643-648. |
| [21] | Dong K W, Sang R, Fang X J, et al. Efficient palladium-catalyzed alkoxycarbonylation of bulk industrial olefins using ferrocenyl phosphine ligands[J]. Angewandte Chemie International Edition, 2017, 56(19): 5267-5271. |
| [22] | Drent E. Process for the preparation of polyketones: DE3566549A[P]. 1985-09-10. |
| [23] | Pugh R I, Drent E, Pringle P G. Tandem isomerisation-carbonylation catalysis: highly active p a l l a d i u m ( Ⅱ ) catalysts for the selective methoxycarbonylation of internal alkenes to linear esters[J]. Chemical Communications, 2001(16): 1476-1477. |
| [24] | Clegg W, Elsegood M R J, Eastham G R, et al. Highly active and selective catalysts for the production of methyl propanoate via the methoxycarbonylation of ethene[J]. Chemical Communications, 1999(18): 1877-1878. |
| [25] | Vondran J, Furst M R L, Eastham G R, et al. Magic of alpha: the chemistry of a remarkable bidentate phosphine, 1,2-bis(di-tert-butylphosphinomethyl)benzene[J]. Chemical Reviews, 2021, 121(11): 6610-6653. |
| [26] | Seayad A, Kelkar A A, Toniolo L, et al. Hydroesterification of styrene using an in situ formed Pd(OTs)2(PPh3)2 complex catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1/2): 47-59. |
| [27] | Wang H, Zhao Y F, Zhang F T, et al. Hydrogen-bond donor and acceptor cooperative catalysis strategy for cyclic dehydration of diols to access O-heterocycles[J]. Science Advances, 2021, 7(22): eabg0396. |
| [28] | Dong K W, Sang R, Wei Z H, et al. Cooperative catalytic methoxycarbonylation of alkenes: uncovering the role of palladium complexes with hemilabile ligands[J]. Chemical Science, 2018, 9(9): 2510-2516. |
| [29] | Drent D, Budzelaar P H M, Jager W W, et al. Carbonylation catalyst process: EP044144TA1[P]. 1991-02-05. |
| [30] | Vavasori A, Cavinato G, Toniolo L. Effect of a hydride source (water, hydrogen, p-toluenesulfonic acid) on the hydroesterification of ethylene to methyl propionate using a Pd(PPh3)2(TsO)2 (TsO = p-toluenesulfonate anion) catalyst precursor[J]. Journal of Molecular Catalysis A: Chemical, 2001, 176(1/2): 11-18. |
| [31] | Cavinato G, Facchetti S, Toniolo L. Ethene hydromethoxycarbonylation catalyzed by cis-[Pd(SO4)(PPh3)2]/H2SO4/PPh3 [J]. Journal of Molecular Catalysis A: Chemical, 2010, 333(1/2): 180-185. |
| [32] | Khokarale S G, García-Suárez E J, Xiong J, et al. Zwitterion enhanced performance in palladium-phosphine catalyzed ethylene methoxycarbonylation[J]. Catalysis Communications, 2014, 44: 73-75. |
| [33] | Pugh R, Drent E. Methoxycarbonylation versus hydroacylation of ethene; dramatic influence of the ligand in cationic palladium catalysis [J]. Advanced Synthesis & Catalysis, 2002, 344(8): 837-840. |
| [34] | Dong K, Fang X, Gülak S, et al. Highly active and efficient catalysts for alkoxycarbonylation of alkenes [J]. Nat. Commun., 2017, 8(1): 14117. |
| [35] | Wang L M, Bian Y H, Wu Z Y, et al. Revealing the role of hydrogen bond, mechanism and kinetic for hydroesterification of ethylene to methyl propionate[J]. Chemical Engineering Journal, 2023, 470: 144331. |
| [36] | García-Suárez E J, Khokarale S G, van Buu O N, et al. Pd-catalyzed ethylene methoxycarbonylation with Brønsted acid ionic liquids as promoter and phase-separable reaction media[J]. Green Chemistry, 2014, 16(1): 161-166. |
| [37] | Khokarale S G, García-Suárez E J, Fehrmann R, et al. Highly selective continuous gas-phase methoxycarbonylation of ethylene with supported ionic liquid phase (SILP) catalysts[J]. ChemCatChem, 2017, 9(10): 1824-1829. |
| [38] | 谭平华, 肖春妹, 熊国炎, 等. 乙烯羰基化合成研究进展[J]. 现代化工, 2011, 31(9): 28-31. |
| Tan P H, Xiao C M, Xiong G Y, et al. Progress in carbonylation synthesis of ethylene[J]. Modern Chemical Industry, 2011, 31(9): 28-31. | |
| [39] | 刘梦力, 曾波, 胡波, 等. 膦配体电子和空间效应对钯催化羰化酯化反应的影响[J]. 分子催化, 2022, 36(3): 253-273. |
| Liu M L, Zeng B, Hu B, et al. Influence of electronic and steric factors of phosphine ligands upon palladium-catalyzed alkoxycarbonylation[J]. Journal of Molecular Catalysis (China), 2022, 36(3): 253-273. | |
| [40] | de la Fuente V, Waugh M, Eastham G R, et al. Phosphine ligands in the palladium-catalysed methoxycarbonylation of ethene: insights into the catalytic cycle through an HP NMR spectroscopic study[J]. Chemistry, 2010, 16(23): 6919-6932. |
| [41] | Vavasori A, Toniolo L. Carbon monoxide-ethylene copolymerization catalyzed by a Pd(AcO)2/dppp/TsOH system: the promoting effect of water and of the acid[J]. Journal of Molecular Catalysis A: Chemical, 1996, 110(1): 13-23. |
| [42] | Tooze R P, Whiston K, Malyan A P, et al. Evidence for the hydride mechanism in the methoxycarbonylation of ethene catalysed by palladium-triphenylphosphine complexes[J]. Dalton Transactions, 2000(19): 3441-3444. |
| [43] | Vavasori A, Toniolo L, Cavinato G. Hydroesterification of cyclohexene using the complex Pd(PPh3)2(TsO)2 as catalyst precursor: effect of a hydrogen source (TsOH, H2O) on the TOF and a kinetic study (TsOH: p-toluenesulfonic acid)[J]. Journal of Molecular Catalysis A: Chemical, 2003, 191(1): 9-21. |
| [44] | Yang D, Liu L, Wang D L, et al. Novel multi-dentate phosphines for Pd-catalyzed alkoxycarbonylation of alkynes promoted by H2O additive[J]. Journal of Catalysis, 2019, 371: 236-244. |
| [45] | Cavinato G, Toniolo L, Vavasori A. Characterization and catalytic activity of trans-[Pd(COCH2CH3)(TsO)(PPh3)2], isolated from the hydro-methoxycarbonylation of ethene catalyzed by [Pd(TsO)2(PPh3)2] [J]. Journal of Molecular Catalysis A: Chemical, 2004, 219(2): 233-240. |
| [1] | Hao DING, Lin WANG, Hao LIU. Comparative study on mixing rules of vapor-liquid equilibrium for R290/R245fa [J]. CIESC Journal, 2025, 76(S1): 9-16. |
| [2] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [3] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [4] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| [5] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
| [6] | Zhongqing CHEN, Jiaxu LIU, Yanyu WANG, Hongquan JING, Cuihong HOU, Lingbo QU. Effect of K-B-Al ternary system on the melting characteristics and glass structure of tailings [J]. CIESC Journal, 2025, 76(3): 1323-1333. |
| [7] | Shan GUO, Yu TIAN, Yongbin XU, Peng WANG, Zhiming LIU. Synthesis of a high-efficacy medium-entropy alloy catalyst via the recycling of spent batteries and its subsequent performance evaluation [J]. CIESC Journal, 2025, 76(1): 231-240. |
| [8] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
| [9] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
| [10] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
| [11] | Guangyu ZHANG, Ranfei FU, Bing SUN, Juncong YUAN, Xiang FENG, Chaohe YANG, Wei XU. Synthesis of propylene carbonate from CO2 and propylene oxide: hydrogen bond activation strategy [J]. CIESC Journal, 2024, 75(6): 2243-2251. |
| [12] | Lin ZHANG, Ziyi ZHANG, Yong LI, Shaoping TONG. Preparation of Fe-carbon/nitrogen composites from Fe-MOF-74 precusor and its performance in activating peroxymonosulfate [J]. CIESC Journal, 2024, 75(5): 1882-1889. |
| [13] | Yuexing WEI, Ziyue HE, Kezhou YAN, Linyu LI, Yuhong QIN, Chong HE, Luchang JIAO. Catalytic degradation of bisphenol A by modified coal gasification slag [J]. CIESC Journal, 2024, 75(3): 877-889. |
| [14] | Zhiming CHEN, Zefeng WANG, Gaoqi MA, Liangbo WANG, Chengtao YU, Pengju PAN. Research progress on improving thermal stability of polylactic acid based on stannous inactivation and chain end-group modification [J]. CIESC Journal, 2024, 75(3): 760-767. |
| [15] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||