CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4129-4144.DOI: 10.11949/0438-1157.20250142
• Intelligent process engineering • Previous Articles Next Articles
Yaqing HE1(
), Weiqing WANG1(
), Yingtian CHI2, Jiarong LI2, Haiyun WANG1, Xinyan ZHANG1, Bowen LIU1
Received:2025-02-15
Revised:2025-04-26
Online:2025-09-17
Published:2025-08-25
Contact:
Weiqing WANG
赫亚庆1(
), 王维庆1(
), 池映天2, 李佳蓉2, 王海云1, 张新燕1, 刘博文1
通讯作者:
王维庆
作者简介:赫亚庆(1990—),男,博士研究生,2363423816@qq.com
基金资助:CLC Number:
Yaqing HE, Weiqing WANG, Yingtian CHI, Jiarong LI, Haiyun WANG, Xinyan ZHANG, Bowen LIU. Optimization analysis of 3D modelling of SOEC stacks taking into account inhomogeneities[J]. CIESC Journal, 2025, 76(8): 4129-4144.
赫亚庆, 王维庆, 池映天, 李佳蓉, 王海云, 张新燕, 刘博文. 考虑不均匀性的SOEC电堆3D建模优化分析[J]. 化工学报, 2025, 76(8): 4129-4144.
Add to citation manager EndNote|Ris|BibTeX
| 参数约束条件 | 数值 |
|---|---|
| 氧电极侧集流体电势/V | 0 |
| 氢电极侧集流体电势/V | 1~2 |
| 空气流道入口O2与N2摩尔比 | 21∶79 |
| 氢气流道入口H2O与H2摩尔比 | 9∶1 |
| 空气流道出口压强/kPa | 101 |
| 氢气流道出口压强/ kPa | 101 |
| 空气流道入口温度/℃ | 810 |
| 氢气流道入口温度/℃ | 810 |
| 空气流道入口速度/(m/s) | 4~6 |
| 氢气流道入口速度/(m/s) | 2~4 |
Table 1 Boundary constraints of 3D spatial multiphysics field model of SOEC stack
| 参数约束条件 | 数值 |
|---|---|
| 氧电极侧集流体电势/V | 0 |
| 氢电极侧集流体电势/V | 1~2 |
| 空气流道入口O2与N2摩尔比 | 21∶79 |
| 氢气流道入口H2O与H2摩尔比 | 9∶1 |
| 空气流道出口压强/kPa | 101 |
| 氢气流道出口压强/ kPa | 101 |
| 空气流道入口温度/℃ | 810 |
| 氢气流道入口温度/℃ | 810 |
| 空气流道入口速度/(m/s) | 4~6 |
| 氢气流道入口速度/(m/s) | 2~4 |
| 相关参数 | 数值 |
|---|---|
| SOEC长度/ mm | 75.0 |
| SOEC宽度/ mm | 30.0 |
| SOEC厚度/ mm | 2.1 |
| 氢电极功能层厚度/μm | 50.0 |
| 氧电极长度/ mm | 72.0 |
| 氧电极宽度/ mm | 28.0 |
| 氧电极厚度/μm | 30.0 |
| 电解质厚度/ μm | 8.0 |
| 氢电极支撑层厚度/μm | 500.0 |
| 金属支撑体长度/ mm | 75.0 |
| 金属支撑体宽度/ mm | 30.0 |
| 金属支撑体厚度/ mm | 1.5 |
| 流道宽度/ mm | 1.5 |
| 流道高度/ mm | 0.8 |
Table 2 Single-stack parameters
| 相关参数 | 数值 |
|---|---|
| SOEC长度/ mm | 75.0 |
| SOEC宽度/ mm | 30.0 |
| SOEC厚度/ mm | 2.1 |
| 氢电极功能层厚度/μm | 50.0 |
| 氧电极长度/ mm | 72.0 |
| 氧电极宽度/ mm | 28.0 |
| 氧电极厚度/μm | 30.0 |
| 电解质厚度/ μm | 8.0 |
| 氢电极支撑层厚度/μm | 500.0 |
| 金属支撑体长度/ mm | 75.0 |
| 金属支撑体宽度/ mm | 30.0 |
| 金属支撑体厚度/ mm | 1.5 |
| 流道宽度/ mm | 1.5 |
| 流道高度/ mm | 0.8 |
| 类别 | ||||||
|---|---|---|---|---|---|---|
| 方 | 1 | 1 | 1 | 1 | 1 | 1 |
| 方 | 1 | 1 | 1 | 1 | 0 | 0 |
Table 3 Weight coefficient of different optimization objects
| 类别 | ||||||
|---|---|---|---|---|---|---|
| 方 | 1 | 1 | 1 | 1 | 1 | 1 |
| 方 | 1 | 1 | 1 | 1 | 0 | 0 |
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 807.50 | 0.04 | 12.62 | 0.19 | 77.80 | 1.27 |
| 方 | 808.00 | 0.07 | 12.10 | 0.32 | 87.10 | 1.29 | |
| 优化占比 | 0.06% | 42.86% | -4.30% | 40.63% | 10.68% | 1.55% | |
| 经典3D模型 | 方 | 807.50 | 0.03 | 12.63 | 0.19 | 77.80 | 1.27 |
| 方 | 808.00 | 0.06 | 12.10 | 0.32 | 87.10 | 1.29 | |
| 优化占比 | 0.06% | 50.00% | -4.38% | 40.63% | 10.68% | 1.55% |
Table 4 Comparison of decision-making results under different models and approaches for a stack power of 16 W
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 807.50 | 0.04 | 12.62 | 0.19 | 77.80 | 1.27 |
| 方 | 808.00 | 0.07 | 12.10 | 0.32 | 87.10 | 1.29 | |
| 优化占比 | 0.06% | 42.86% | -4.30% | 40.63% | 10.68% | 1.55% | |
| 经典3D模型 | 方 | 807.50 | 0.03 | 12.63 | 0.19 | 77.80 | 1.27 |
| 方 | 808.00 | 0.06 | 12.10 | 0.32 | 87.10 | 1.29 | |
| 优化占比 | 0.06% | 50.00% | -4.38% | 40.63% | 10.68% | 1.55% |
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 808.30 | 0.17 | 24.67 | 0.20 | 77.60 | 1.29 |
| 方 | 807.85 | 0.20 | 24.15 | 0.33 | 86.10 | 1.32 | |
| 优化占比 | -0.06% | 15.00% | -2.15% | 39.39% | 9.87% | 2.27% | |
| 经典3D模型 | 方 | 808.30 | 0.18 | 24.66 | 0.20 | 77.60 | 1.29 |
| 方 | 807.85 | 0.21 | 24.15 | 0.33 | 86.10 | 1.32 | |
| 优化占比 | -0.06% | 14.29% | -2.11% | 39.39% | 9.87% | 2.27% |
Table 5 Comparison of decision-making results under different models and approaches for a stack power of 32 W
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 808.30 | 0.17 | 24.67 | 0.20 | 77.60 | 1.29 |
| 方 | 807.85 | 0.20 | 24.15 | 0.33 | 86.10 | 1.32 | |
| 优化占比 | -0.06% | 15.00% | -2.15% | 39.39% | 9.87% | 2.27% | |
| 经典3D模型 | 方 | 808.30 | 0.18 | 24.66 | 0.20 | 77.60 | 1.29 |
| 方 | 807.85 | 0.21 | 24.15 | 0.33 | 86.10 | 1.32 | |
| 优化占比 | -0.06% | 14.29% | -2.11% | 39.39% | 9.87% | 2.27% |
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 809.10 | 0.38 | 36.39 | 0.22 | 78.00 | 1.32 |
| 方 | 809.00 | 0.42 | 35.87 | 0.34 | 86.30 | 1.35 | |
| 优化占比 | -0.01% | 9.52% | -1.45% | 35.29% | 9.62% | 2.22% | |
| 经典3D模型 | 方 | 809.10 | 0.37 | 36.40 | 0.22 | 78.00 | 1.32 |
| 方 | 809.00 | 0.41 | 35.88 | 0.34 | 86.30 | 1.35 | |
| 优化占比 | -0.01% | 9.76% | -1.45% | 35.29% | 9.62% | 2.22% |
Table 6 Comparison of decision-making results under different models and approaches for a stack power of 48 W
| 模型类型 | 方式/占比 | ||||||
|---|---|---|---|---|---|---|---|
| I-KAM代理模型 | 方 | 809.10 | 0.38 | 36.39 | 0.22 | 78.00 | 1.32 |
| 方 | 809.00 | 0.42 | 35.87 | 0.34 | 86.30 | 1.35 | |
| 优化占比 | -0.01% | 9.52% | -1.45% | 35.29% | 9.62% | 2.22% | |
| 经典3D模型 | 方 | 809.10 | 0.37 | 36.40 | 0.22 | 78.00 | 1.32 |
| 方 | 809.00 | 0.41 | 35.88 | 0.34 | 86.30 | 1.35 | |
| 优化占比 | -0.01% | 9.76% | -1.45% | 35.29% | 9.62% | 2.22% |
| [1] | 张俊杰, 孙旺, 高啸天, 等. 固体氧化物电解池制氢关键技术及产业化进展[J]. 化工学报, 2023, 74(12): 4749-4763. |
| Zhang J J, Sun W, Gao X T, et al. Key technology and industrialization progress of hydrogen production by solid oxide electrolytic cell[J]. CIESC Journal, 2023, 74(12): 4749-4763. | |
| [2] | 李佳蓉, 林今, 邢学韬, 等. 主动配电网中基于统一运行模型的电制氢(P2H)模块组合选型与优化规划[J]. 中国电机工程学报, 2021, 41(12): 4021-4033. |
| Li J R, Lin J, Xing X T, et al. Technology portfolio selection and optimal planning of power-to-hydrogen(P2H) modules in active distribution network[J]. Proceedings of the CSEE, 2021, 41(12): 4021-4033. | |
| [3] | 邢学韬, 林今, 宋永华, 等. 基于高温电解的大规模电力储能技术[J]. 全球能源互联网, 2018, 1(3): 303-312. |
| Xing X T, Lin J, Song Y H, et al. Large scale energy storage technology based on high-temperature electrolysis[J]. Journal of Global Energy Interconnection, 2018, 1(3): 303-312. | |
| [4] | Chi Y T, Qiu Y W, Lin J, et al. Online identification of a link function degradation model for solid oxide fuel cells under varying-load operation[J]. International Journal of Hydrogen Energy, 2022, 47(4): 2622-2646. |
| [5] | 章大海, 史晓锋, 侯啸海, 等. 固体氧化物电解池平行流道流动不均匀性优化模拟[J]. 硅酸盐学报, 2024, 52(5): 1687-1697. |
| Zhang D H, Shi X F, Hou X H, et al. Simulations on flow non-uniformity in parallel channel of solid oxide electrolysis cells[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1687-1697. | |
| [6] | 冯祥, 杨超, 梁超余, 等. 可逆固体氧化物燃料电池性能的数值模拟研究[J]. 推进技术, 2020, 41(11): 2630-2640. |
| Feng X, Yang C, Liang C Y, et al. Numerical simulation of reversible solid oxide fuel cell performance[J]. Journal of Propulsion Technology, 2020, 41(11): 2630-2640. | |
| [7] | Chi Y T, Qiu Y W, Lin J, et al. A robust surrogate model of a solid oxide cell based on an adaptive polynomial approximation method[J]. International Journal of Hydrogen Energy, 2020, 45(58): 32949-32971. |
| [8] | 张玉魁, 张晨佳, 孙振新, 等. 高温固体氧化物电解制氢模拟研究进展[J]. 化工进展, 2021, 40(S1): 126-141. |
| Zhang Y K, Zhang C J, Sun Z X, et al. Review on modeling and simulation of high temperature solid oxide electrolysis for hydrogen production[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 126-141. | |
| [9] | 王雅倩, 任娜, 徐宗磊, 等. 电/热/气多能转换的可逆固体氧化物燃料电池信息物理融合建模与仿真[J]. 电网技术, 2018, 42(11): 3535-3542. |
| Wang Y Q, Ren N, Xu Z L, et al. Cyber-physical system modeling and simulation of power-heat-gas multi-energy conversion for reversible solid oxide fuel cell[J]. Power System Technology, 2018, 42(11): 3535-3542. | |
| [10] | Srikanth S, Heddrich M P, Gupta S, et al. Transient reversible solid oxide cell reactor operation—experimentally validated modeling and analysis[J]. Applied Energy, 2018, 232: 473-488. |
| [11] | Nasser M, Hassan H. Assessment of hydrogen production from waste heat using hybrid systems of Rankine cycle with proton exchange membrane/solid oxide electrolyzer[J]. International Journal of Hydrogen Energy, 2023, 48(20): 7135-7153. |
| [12] | Buffo G, Ferrero D, Santarelli M, et al. Energy and environmental analysis of a flexible Power-to-X plant based on Reversible Solid Oxide Cells (rSOCs) for an urban district[J]. Journal of Energy Storage, 2020, 29: 101314. |
| [13] | Jolaoso L A, Bello I T, Ojelade O A, et al. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production — a comprehensive review[J]. International Journal of Hydrogen Energy, 2023, 48(85): 33017-33041. |
| [14] | Wang H, Xiao L S, Liu Y Q, et al. Performance and thermal stress evaluation of full-scale SOEC stack using multi-physics modeling method[J]. Energies, 2023, 16(23): 7720. |
| [15] | 姚文岐, 王江江, 邓宇, 等. 基于太阳能全光谱利用的固体氧化物电解池系统性能分析[J]. 工程热物理学报, 2024, 45(5): 1264-1274. |
| Yao W Q, Wang J J, Deng Y, et al. Performance analysis of solid oxide electrolysis cell system based on full-spectrum utilization of solar energy[J]. Journal of Engineering Thermophysics, 2024, 45(5): 1264-1274. | |
| [16] | 尹燕, 杜迎梦, 焦魁, 等. 固体氧化物电解池结构对其性能的影响研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(11): 1171-1178. |
| Yin Y, Du Y M, Jiao K, et al. Influence of the structure of solid oxide electrolysis cell on its performance[J]. Journal of Tianjin University (Science and Technology), 2019, 52(11): 1171-1178. | |
| [17] | Chi Y T, Yokoo K, Nakajima H, et al. Optimizing the homogeneity and efficiency of a solid oxide electrolysis cell based on multiphysics simulation and data-driven surrogate model[J]. Journal of Power Sources, 2023, 562: 232760. |
| [18] | 牟树君, 林今, 邢学韬, 等. 高温固体氧化物电解水制氢储能技术及应用展望[J]. 电网技术, 2017, 41(10): 3385-3391. |
| Mu S J, Lin J, Xing X T, et al. Technology and application prospect of high-temperature solid oxide electrolysis cell[J]. Power System Technology, 2017, 41(10): 3385-3391. | |
| [19] | 张梦茹, 王恩华, 胡浩然, 等. 金属支撑型固体氧化物电解池的3D建模与性能分析[J]. 北京理工大学学报, 2024, 44(1): 69-75. |
| Zhang M R, Wang E H, Hu H R, et al. 3D simulation and performance analysis of a metal-supported solid oxide electrolysis cell[J]. Transactions of Beijing Institute of Technology, 2024, 44(1): 69-75. | |
| [20] | 齐宇博, 张淑兴. 平板型固体氧化物燃料电池堆仿真分析[J]. 陶瓷学报, 2022, 43(5): 899-907. |
| Qi Y B, Zhang S X. Simulation of flat-type solid oxide fuel cell stack[J]. Journal of Ceramics, 2022, 43(5): 899-907. | |
| [21] | Chi Y T, Li P Y, Lin J, et al. Fast and safe heating-up control of a planar solid oxide cell stack: a three-dimensional model-in-the-loop study[J]. Journal of Power Sources, 2023, 560: 232655. |
| [22] | 窦真兰, 李佳文, 张春雁, 等. 固体氧化物电解池时空分布式参数建模[J]. 综合智慧能源, 2024, 46(7): 53-62. |
| Dou Z L, Li J W, Zhang C Y, et al. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells[J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. | |
| [23] | Chi Y T, Hu Q, Lin J, et al. Numerical simulation acceleration of flat-chip solid oxide cell stacks by data-driven surrogate cell submodels[J]. Journal of Power Sources, 2023, 553: 232255. |
| [24] | 田宗睿, 智鹏鹏, 云国丽, 等. 基于自适应增量Kriging模型的多目标稳健优化设计方法[J]. 中国机械工程, 2023, 34(8): 931-940. |
| Tian Z R, Zhi P P, Yun G L, et al. Multi-objective robust optimization design method based on adaptive incremental Kriging model[J]. China Mechanical Engineering, 2023, 34(8): 931-940. | |
| [25] | 万良琪, 欧阳林寒. 基于0-1规划模型筛选策略的Kriging组合模型及可靠性优化设计[J]. 计算机集成制造系统, 2022, 28(7): 2162-2168. |
| Wan L Q, Ouyang L H. Kriging ensemble model based on 0-1 programming model selection strategy for reliability-based design optimization[J]. Computer Integrated Manufacturing Systems, 2022, 28(7): 2162-2168. | |
| [26] | Wu Y H, Liu H K, Wang Y F, et al. Spatially resolved electrochemical performance and temperature distribution of a segmented solid oxide fuel cell under various hydrogen dilution ratios and electrical loadings[J]. Journal of Power Sources, 2022, 536: 231477. |
| [27] | 池映天. 面向灵活调节的固体氧化物电堆建模与控制[D]. 北京: 清华大学, 2023. |
| Chi Y T. Modeling and control of solid oxide cell stacks for flexible regulation[D]. Beijing: Tsinghua University, 2023. | |
| [28] | da Rosa Silva E, Sassone G, Prioux M, et al. A multiscale model validated on local current measurements for understanding the solid oxide cells performances[J]. Journal of Power Sources, 2023, 556: 232499. |
| [29] | 齐珂, 王迪, 谢喆, 等. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274. |
| Qi K, Wang D, Xie Z, et al. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields[J]. CIESC Journal, 2025, 76(3): 1264-1274. | |
| [30] | Li Q S, Kuang K B, Sun Y N, et al. Deficiency of hydrogen production in commercialized planar Ni-YSZ/YSZ/LSM-YSZ steam electrolysis cells[J]. International Journal of Hydrogen Energy, 2022, 47(56): 23514-23519. |
| [31] | Son J, Hwang S, Hong S, et al. Parameter study on solid oxide fuel cell heat-up process to reaction starting temperature[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2020, 7(6): 1073-1083. |
| [1] | Qiuying LI, Yihuai HUA, Hao CHENG, Hanwei ZHANG, Wenrui LIU, Haochuan BAI, Kai WANG, Limin QIU. Design of efficient hydrogen liquefaction process integrated with ORC system [J]. CIESC Journal, 2025, 76(7): 3651-3658. |
| [2] | Yifei WANG, Jingjie REN, Mingshu BI, Haotian YE. Multi-objective optimization of cyclohexane oxidation process parameters based on inherent safety and economic performance [J]. CIESC Journal, 2025, 76(6): 2722-2732. |
| [3] | Xiaotong XIANG, Xudong DUAN, Simin WANG. Research on performance of PEM electrolyzer driven by multi-objective optimization [J]. CIESC Journal, 2025, 76(6): 2626-2637. |
| [4] | Dandong NING, Jianhui LI, Yang CHEN, Jinping LI, Libo LI. Study on flocculation techniques in the large-scale production of MIL-101(Cr) [J]. CIESC Journal, 2025, 76(5): 2327-2336. |
| [5] | Yang ZHOU, Dan LIANG, Kai WANG, Yilan ZHANG, Li JIA. Modeling of wastewater reverse osmosis process based on Alopex evolutionary algorithm and ensemble learning multi-model back propagation neural network [J]. CIESC Journal, 2025, 76(4): 1661-1670. |
| [6] | Haidong LI, Qiqi ZHANG, Lu YANG, Naeem AKRAM, Chenglin CHANG, Wenlong MO, Weifeng SHEN. Detailed design of shell-and-tube heat exchanger using intelligent evolutionary algorithms [J]. CIESC Journal, 2025, 76(1): 241-255. |
| [7] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
| [8] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
| [9] | Jiapeng YU, Na XU, Wei ZHANG, Qingyuan KANG, Hong ZHANG, Muxuan QIN, Jiabin FANG. Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor [J]. CIESC Journal, 2024, 75(10): 3681-3690. |
| [10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
| [11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
| [12] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
| [13] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
| [14] | Zhengfeng WANG, Yuhang XIE, Yongchun FAN, Weike LI, Qian FU. Active carbons supported Ni-N-C catalysts for enhanced Faraday efficiency of electrolytic bicarbonate [J]. CIESC Journal, 2023, 74(11): 4570-4577. |
| [15] | Xingwei LIU, Shengkun JIA, Yiqing LUO, Xigang YUAN. Optimization of distillation column based on trust region algorithm [J]. CIESC Journal, 2022, 73(5): 2031-2038. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||