CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4248-4258.DOI: 10.11949/0438-1157.20250118
• Energy and environmental engineering • Previous Articles Next Articles
Chen HE1(
), Mingfei LU1, Lingjin WANG2, Xiaoying XU2, Pengbo DONG1, Wentao ZHAO1, Wuqiang LONG1(
)
Received:2025-02-06
Revised:2025-03-25
Online:2025-09-17
Published:2025-08-25
Contact:
Wuqiang LONG
何晨1(
), 陆明飞1, 王令金2, 许晓颖2, 董鹏博1, 赵文涛1, 隆武强1(
)
通讯作者:
隆武强
作者简介:何晨(2001—),男,硕士研究生,hc1@mail.dlut.edu.cn
基金资助:CLC Number:
Chen HE, Mingfei LU, Lingjin WANG, Xiaoying XU, Pengbo DONG, Wentao ZHAO, Wuqiang LONG. Experimental and simulation study of lean-burn laminar flow of ammonia-methanol high-pressure mixture[J]. CIESC Journal, 2025, 76(8): 4248-4258.
何晨, 陆明飞, 王令金, 许晓颖, 董鹏博, 赵文涛, 隆武强. 氨-甲醇高压混合气稀燃层流实验与模拟研究[J]. 化工学报, 2025, 76(8): 4248-4258.
Add to citation manager EndNote|Ris|BibTeX
| 外推方法 | 拟合公式 |
|---|---|
| LS | |
| LC | |
| NQ |
Table 1 Stretch flame extrapolation model
| 外推方法 | 拟合公式 |
|---|---|
| LS | |
| LC | |
| NQ |
| 反应 | 反应参数 | ||||||
|---|---|---|---|---|---|---|---|
| 原始机理 | 改进机理 | ||||||
| A | β | Ea/(J/mol) | A | β | Ea/(J/mol) | ||
| 1 | NNH | 3.00×108 | 0 | 0 | 6.50×102 | 0 | 0 |
| 2 | NH2+NO | 4.30×1010 | 0.294 | -866 | 8.30×1010 | 0.31 | -866 |
| 3 | HNO+H | 9.00×1011 | 0.72 | 660 | 5.20×1012 | 0.72 | 660 |
| 4 | HNO+OH | 1.30×107 | 1.90 | -950 | 1.30×106 | 2.10 | -950 |
| 5 | H+NO+M | 4.48×1019 | -1.32 | 740 | 5.60×1019 | -1.290 | 740 |
Table 2 The modified reaction kinetics data
| 反应 | 反应参数 | ||||||
|---|---|---|---|---|---|---|---|
| 原始机理 | 改进机理 | ||||||
| A | β | Ea/(J/mol) | A | β | Ea/(J/mol) | ||
| 1 | NNH | 3.00×108 | 0 | 0 | 6.50×102 | 0 | 0 |
| 2 | NH2+NO | 4.30×1010 | 0.294 | -866 | 8.30×1010 | 0.31 | -866 |
| 3 | HNO+H | 9.00×1011 | 0.72 | 660 | 5.20×1012 | 0.72 | 660 |
| 4 | HNO+OH | 1.30×107 | 1.90 | -950 | 1.30×106 | 2.10 | -950 |
| 5 | H+NO+M | 4.48×1019 | -1.32 | 740 | 5.60×1019 | -1.290 | 740 |
| [1] | Moshiul A, Mohammad R, Hira F, et al. Alternative marine fuel research advances and future trends: a bibliometric knowledge mapping approach[J]. Sustainability, 2022, 14(9): 4947. |
| [2] | Yoro K O, Daramola M O. CO2 emission sources, greenhouse gases, and the global warming effect[M]//Advances in Carbon Capture. Cambridge: Woodhead Publishing, 2020: 3-28. |
| [3] | Stančin H, Mikulčić H, Wang X, et al. A review on alternative fuels in future energy system[J]. Renewable and Sustainable Energy Reviews, 2020, 128: 109927. |
| [4] | Wang X, Khurshid A, Qayyum S, et al. The role of green innovations, environmental policies and carbon taxes in achieving the sustainable development goals of carbon neutrality[J]. Environmental Science and Pollution Research, 2022, 29: 8393-8407. |
| [5] | Cai T, Zhao D, Gutmark E. Overview of fundamental kinetic mechanisms and emission mitigation in ammonia combustion[J]. Chemical Engineering Journal, 2023, 458: 141391. |
| [6] | Cardoso J S, Silva V, Rocha R, et al. Ammonia as an energy vector: current and future prospects for low-carbon fuel applications in internal combustion engines[J]. Journal of Cleaner Production, 2021, 296: 126562. |
| [7] | 毛晨林, 王平, Shrotriya Prashant, 等. 含氨燃料预混火焰的层流火焰速度及NO排放特性[J]. 化工学报, 2021, 72(10): 5330-5343. |
| Mao C L, Wang P, Shrotriya P, et al. Laminar flame speed and NO emission characteristics of premixed flames with different ammonia-containing fuels[J]. CIESC Journal, 2021, 72(10): 5330-5343. | |
| [8] | El-Adawy M, Nemitallah M, Abdelhafez A. Towards sustainable hydrogen and ammonia internal combustion engines: challenges and opportunities[J]. Fuel, 2024, 364: 131090. |
| [9] | Tornatore C, Marchitto L, Sabia P, et al. Ammonia as green fuel in internal combustion engines: state-of-the-art and future perspectives[J]. Frontiers in Mechanical Engineering, 2022, 8: 944201. |
| [10] | Zhang Z, Long W, Dong P, et al. Performance characteristics of a two-stroke low speed engine applying ammonia/diesel dual direct injection strategy[J]. Fuel, 2023, 332: 126086. |
| [11] | Zhang Z, Long W, Cui Z, et al. Visualization study on the ignition and diffusion combustion process of liquid phase ammonia spray ignited by diesel jet in a constant volume vessel[J]. Energy Conversion and Management, 2024, 299: 117889. |
| [12] | Klawitter M, Wüthrich S, Cartier P, et al. Ammonia as a fuel: optical investigation of turbulent flame propagation of NH3/air and NH3/H2/N2/air flames at engine conditions[J]. Fuel, 2024, 375: 132616. |
| [13] | 何灿星.火焰-壁面相互作用下氨/甲烷射流火焰的燃烧与排放特性研究[D]. 青岛: 青岛科技大学, 2024. |
| He C X. Study on combustion and emission characteristics of ammonia/methane jet flame with flame-wall interaction[D]. Qingdao: Qingdao University of Science and Technology, 2024. | |
| [14] | 金亦凡, 马志豪, 王鑫, 等. 二甲醚对氨着火特性的影响与动力学分析[J]. 内燃机学报, 2024, 42(3): 236-244. |
| Jin Y F, Ma Z H, Wang X, et al. Effect of dimethyl ether on ignition characteristics of ammonia and chemical kinetics[J]. Transactions of CSICE, 2024, 42(3): 236-244. | |
| [15] | Jin Y, Li X, Wang X, et al. Effect of dimethyl ether on ignition characteristics of ammonia and chemical kinetics[J]. Fuel, 2023, 343: 127885. |
| [16] | Tabibian S, Sharifzadeh M. Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol[J]. Renewable and Sustainable Energy Reviews, 2023, 179: 113281. |
| [17] | Leonzio G, Foscolo P, Zondervan E, et al. Scenario analysis of carbon capture, utilization (particularly producing methane and methanol), and storage (CCUS) systems[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6961-6976. |
| [18] | 杨协和, 沈文锋, 张扬, 等. 甲醇-空气层流火焰速度的数值研究和预测模型[J]. 化工学报, 2019, 70(8): 3011-3020. |
| Yang X H, Shen W F, Zhang Y, et al. Numerical investigation and prediction models for methanol-air laminar flame speed[J]. CIESC Journal, 2019, 70(8): 3011-3020. | |
| [19] | Basini L, Furesi F, Baumgärtl M, et al. CO2 capture and utilization (CCU) by integrating water electrolysis, electrified reverse water gas shift (E-RWGS) and methanol synthesis[J]. Journal of Cleaner Production, 2022, 377: 134280. |
| [20] | Wouters C, Burkardt P, Steeger F, et al. Comprehensive assessment of methanol as an alternative fuel for spark-ignition engines[J]. Fuel, 2023, 340: 127627. |
| [21] | Li X, Ma Z, Jin Y, et al. Effect of methanol blending on the high-temperature auto-ignition of ammonia: an experimental and modeling study[J]. Fuel, 2023, 339: 126911. |
| [22] | Li M, He X, Hashemi H, et al. An experimental and modeling study on auto-ignition kinetics of ammonia/methanol mixtures at intermediate temperature and high pressure[J]. Combustion and Flame, 2022, 242: 112160. |
| [23] | Zhang Q, Zhang R, Qi Y, et al. Ignition characteristics of ammonia-methanol blended fuel in a rapid compression machine[J]. Fuel, 2024, 368: 131636. |
| [24] | Wang Z, Han X, He Y, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames[J]. Combustion and Flame, 2021, 229: 111392. |
| [25] | Lu M, Long W, Cui Z, et al. Ammonia-methanol laminar combustion experiment and chemical kinetic modeling within broad range of ambient pressure[J]. Fuel, 2025, 385: 134129. |
| [26] | Zhuang Y, Wu R, Wang X, et al. An experimental and modeling study on the oxidation of ammonia-methanol mixtures in a jet stirred reactor[J]. Fuel, 2024, 356: 129628. |
| [27] | Zhan H, Shen S, Yin G, et al. High-pressure oxidation of an ammonia-methanol mixture: an experimental and modeling study[J]. Energy & Fuels, 2024, 38(23): 23091-23100. |
| [28] | Wang Z, Mei B, Liu N, et al. High pressure ammonia/methanol oxidation up to 100 atm[J]. Proceedings of the Combustion Institute, 2024, 40(1/2/3/4): 105489. |
| [29] | Gao Y, Li Y, Wei X, et al. A kinetic study of CO2 and H2O addition on NO formation for ammonia-methanol combustion[J]. Fuel, 2025, 381: 133283. |
| [30] | Wei F, Lu M, Long W, et al. Optical experiment study on ammonia/methanol mixture combustion performance induced by methanol jet ignition in a constant volume combustion bomb[J]. Fuel, 2023, 352: 129090. |
| [31] | Wang B, Wang H, Yang C, et al. Effect of different ammonia/methanol ratios on engine combustion and emission performance[J]. Applied Thermal Engineering, 2024, 236: 121519. |
| [32] | Uddeen K, Tang Q, Shi H, et al. Ammonia-methanol and ammonia-ethanol dual-fuel combustion in an optical spark-ignition engine: a multiple flame generation approach[J]. Applied Thermal Engineering, 2025, 265: 125544. |
| [33] | 左子农.合成气掺混燃料预混层流燃烧特性研究[D]. 天津: 天津大学, 2018. |
| Zuo Z N. Study on the premixed laminar combustion characteristics of syngas blended fuels[D]. Tianjin: Tianjin University, 2018. | |
| [34] | Huang Z, Zhang Y, Zeng K, et al. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures[J]. Combustion and Flame, 2006, 146(1/2): 302-311. |
| [35] | Kelley A, Law C. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame, 2009, 156(9): 1844-1851. |
| [36] | Bertolino A, Fürst M, Stagni A, et al. An evolutionary, data-driven approach for mechanism optimization: theory and application to ammonia combustion[J]. Combustion and Flame, 2021, 229: 111366. |
| [37] | Osipova K, Sarathy S, Korobeinichev O, et al. Chemical structure of premixed ammonia/hydrogen flames at elevated pressures[J]. Combustion and Flame, 2022, 246: 112419. |
| [1] | Xuyang LU, Qiang XU, Haopeng KANG, Jian SHI, Zeshui CAO, Liejin GUO. The CO reduction characteristics of magnetite oxygen carriers in chemical looping hydrogen production systems [J]. CIESC Journal, 2025, 76(7): 3286-3294. |
| [2] | Hao DUAN, Wenchao WANG, Dong LIU, Xiaojun YIN, Erjiang HU, Ke ZENG. Effects of methanol energy substitution ratio on performance of a methanol/diesel dual direct injection engine [J]. CIESC Journal, 2025, 76(7): 3552-3560. |
| [3] | Chenru ZHOU, Chenwei LIU, Zhiyuan WANG, Minhui QI, Sanbao DONG, Xiangyu WANG, Mingzhong LI. Effect of methanol and ethylene glycol on adhesion strength of methane hydrates [J]. CIESC Journal, 2025, 76(7): 3596-3604. |
| [4] | Bolong LI, Yuxi JIANG, Aotian REN, Wenqi QIN, Jie FU, Xiuyang LYU. Study on continuous alcoholysis of fructose to methyl lactate over TS-1 and In-TS-1 [J]. CIESC Journal, 2025, 76(6): 2678-2686. |
| [5] | Liuhuimei CHENG, Junying YAN, Huiqing LIU, Zhipeng WANG, Baoying WANG, Tongwen XU, Yaoming WANG. Progress of bipolar membrane electrodialysis for non-aqueous systems [J]. CIESC Journal, 2025, 76(5): 1960-1972. |
| [6] | Jiashun LI, Wang LI, Zuzeng QIN, Tongming SU, Xinling XIE, Hongbing JI. Preparation of polyimide-reinforced lignocellulosic nanofibril aerogel and its oil-water separation performance [J]. CIESC Journal, 2025, 76(5): 2169-2185. |
| [7] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
| [8] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
| [9] | Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization [J]. CIESC Journal, 2025, 76(2): 879-887. |
| [10] | Xiaoyu JIANG, Huanting LUO, Rui HONG, Wenjing DU. Specific heat of diol coolant determined by modulated differential scanning calorimetry [J]. CIESC Journal, 2024, 75(S1): 40-46. |
| [11] | Lü LIU, Jieru LIU, Liangliang FAN, Liang ZHAO. Study on passive microfluidic method for particle separation based on laminar effect [J]. CIESC Journal, 2024, 75(S1): 67-75. |
| [12] | Yachao LIU, Xiaojie TAN, Xudong LI, Rui WANG, Hui WANG, Xuan HAN, Qingshan ZHAO. Synthesis of efficient cobalt carbonate nanosheets based on DES for oxygen evolution reaction [J]. CIESC Journal, 2024, 75(9): 3320-3328. |
| [13] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
| [14] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
| [15] | Huiyu CHAO, Zhenmin BAI, Hanqing HOU, Lizhi TIAN, Hong LI, Xiaoquan FANG, Xiaohua SHI. Thermodynamics analysis on liquid-phase synthesis of cyanuric acid [J]. CIESC Journal, 2024, 75(6): 2157-2165. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||