[1] |
李吉, 魏彤, 闫俊, 等. 石墨烯纳米片/CoS2复合材料的制备及其在超级电容器中的应用[J]. 化工学报, 2014, 65(7): 2849-2854. LI J, WEI T, YAN J, et al. Preparation of graphene nanosheet/CoS2 composite and its application in supercapacitors [J]. CIESC Journal, 2014, 65(7): 2849-2854.
|
[2] |
汪晓莉, 郑玉婴, 刘先斌. MnO2纳米空心球的制备及其电化学性能[J]. 化工学报, 2014, 66(3): 1201-1207. WANG X L, ZHENG Y Y, LIU X B. Synthesis and electrochemical properties of MnO2 hollow nanospheres [J]. CIESC Journal, 2015, 66(3): 1201-1207.
|
[3] |
YANG J, YU C, FAN X, LIANG S, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors [J]. Energy Environ. Sci., 2016, 9: 1299-1307.
|
[4] |
KIM J W, AUGUSTYN V, DUNN B. The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5 [J]. Adv. Energy Mater., 2012, 2(1): 141-148.
|
[5] |
COME J, AUGUSTYN V, KIM J W, et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes [J]. J. Electrochem. Soc., 2014, 161(5): A718-A725.
|
[6] |
OHZUKU T, SAWAI K. Electrochemistry of L-niobium pentoxide in a lithium: non-aqueous cell [J]. J. Power Sources, 1987, 19: 287-299.
|
[7] |
REICHMAN B, BARD A. The application of Nb2O5 as a cathode in nonaqueous lithium cells [J]. J. Electrochem. Soc., 1981, 128: 344-356.
|
[8] |
KONG L, ZHANG C, ZHANG S, et al. High-power and high-energy asymmetric supercapacitors based on Li+-intercalation into a T-Nb2O5/graphene pseudocapacitive electrode [J]. J. Mater. Chem. A, 2014, 2(42): 17962-17970.
|
[9] |
AEGERTER M A. Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis [J]. Sol. Energy Mater. Sol. Cells, 2001, 68(3): 401-422.
|
[10] |
LI G, WANG X, CHEN Z, et al. Characterization of niobium and vanadium oxide nanocomposites with improved rate performance and cycling stability [J]. Electrochim. Acta, 2013, 102: 351-357.
|
[11] |
WANG F, WANG X, CHANG Z, et al. A quasi-solid-state sodium-ion capacitor with high energy density [J]. Adv. Mater., 2015, 27: 6962-6968.
|
[12] |
WEI M, WEI K, ICHIHARA M, et al. Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability [J]. Electrochem. Commun., 2008, 10(7): 980-983.
|
[13] |
LE VIET A, REDDY M V, JOSE R, et al. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries [J]. J. Phys. Chem. C, 2010, 114(1): 664-671.
|
[14] |
ZHANG C, MALONEY R, LUKATSKAYA M R, et al. Synthesis and electrochemical properties of niobium pentoxide deposited on layered carbide-derived carbon [J]. J. Power Sources, 2015, 274: 121-129.
|
[15] |
WANG X, LI G, CHEN Z, et al. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes [J]. Adv. Energy Mater., 2011, 1(6): 1089-1093.
|
[16] |
YU Z, TETARD L, ZHAI L, et al. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions [J]. Energy Environ. Sci., 2015, 8(3): 702-730.
|
[17] |
YANG J, YU C, FAN X, et al. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors [J]. Adv. Energy Mater., 2014, 4(18): 1400761.
|
[18] |
YANG J, YU C, FAN X, et al. Ultrafast self-assembly of graphene oxide-induced monolithic NiCo-carbonate hydroxide nanowire architectures with a superior volumetric capacitance for supercapacitors [J]. Adv. Funct. Mater., 2015, 25(14): 2109-2116.
|
[19] |
INAGAKI M, QIU J H, GUO Q. Carbon foam: preparation and application [J]. Carbon, 2015, 87: 128-152.
|
[20] |
LÜ Y, GAN L, LIU M, et al. A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes [J]. J. Power Sources, 2012, 209: 152-157.
|
[21] |
MENG Y, GU D, ZHANG F, et al. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation [J]. Angew. Chem. Int. Ed., 2005, 117(43): 7215-7221.
|
[22] |
LI G, WANG X, MA X. Nb2O5-carbon core-shell nanocomposite as anode material for lithium ion battery [J]. J. Energy Chem., 2013, 22: 357-362.
|
[23] |
DENG S, SUN D, WU C, et al. Synthesis and electrochemical properties of MnO2 nanorods/graphene composites for supercapacitor applications [J]. Electrochim. Acta, 2013, 111: 707-712.
|
[24] |
YE Y, ZHANG H, CHEN Y, et al. Core-shell structure carbon coated ferric oxide (Fe2O3@C) nanoparticles for supercapacitors with superior electrochemical performance [J]. J. Alloy. Compd., 2015, 639: 422-427.
|
[25] |
KUMAGAI N, KOISHIKAWA Y, KOMABA S, et al. Thermodynamics and kinetics of lithium intercalation into Nb2O5 electrodes for a 2 V rechargeable lithium battery [J]. J. Electrochem. Soc., 1999, 146(9): 3203-3210.
|
[26] |
AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J]. Energy Environ. Sci., 2014, 7(5): 1597.
|
[27] |
SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210-1211.
|
[28] |
WU Q F, HE K X, MI H Y, et al. Electrochemical capacitance of polypyrrole nanowire prepared by using cetyltrimethylammonium bromide (CTAB) as soft template [J]. Mater. Chem. Phys., 2007, 101(2): 367-371.
|
[29] |
万厚钊, 缪灵, 徐葵, 等. MnO2基超级电容器电极材料[J]. 化工学报, 2013, 64(3): 801-813. WAN H Z, MIAO L, XU K, et al. Manganese oxide-based electrode behavior as materials for electrochemical supercapacitors [J]. CIESC Journal, 2013, 64(3): 801-813.
|
[30] |
WANG H, LIANG Y, MIRFAKHRAI T, et al. Advanced asymmetrical supercapacitors based on graphene hybrid materials [J]. Nano Res., 2011, 4(8): 729-736.
|
[31] |
CHEN Y, WANG J W, SHI X C, et al. Pseudocapacitive characteristics of manganese oxide anodized from manganese coating electrodeposited from aqueous solution [J]. Electrochim. Acta, 2013, 109: 678-683.
|