[1] |
PADHI A K, NAJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4):1188-1194.
|
[2] |
YAMADA A, KUDO Y, LIU K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4(0≤x≤1)[J]. Journal of the Electrochemical Society, 2001, 148(7):747-754.
|
[3] |
DELACOUT C, LAFFONT L, BOUCHET R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4(M=Fe, Mn) electrode materials[J]. Journal of the Electrochemical Society, 2005, 152(5):913-921.
|
[4] |
KANG B, CEDER G. Battery materials for ultrafast charging and discharging[J]. Nature, 2009, 458(7235):190-193.
|
[5] |
ZHAO B, JIANG Y, ZHANG H, et al. Morphology and electrical properties of carbon coated LiFePO4 cathode materials[J]. Journal of Power Sources, 2009, 189(1):462-466.
|
[6] |
ZHOU F, COCOCCIONI M, KANG K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11):1144-1148.
|
[7] |
YONEMURA M, YAMADA A, TAKEI Y, et al. Comparative kinetic study of olivine LixMPO4(M=Fe, Mn)[J]. Journal of the Electrochemical Society, 2004, 151(9):1352-1356.
|
[8] |
KÖNTJE M, MEMM M, AXMANN P, et al. Substituted transition metal phospho olivines LiMM'PO4(M=Mn, M'=Fe, Co, Mg):optimisation routes for LiMnPO4[J]. Journal of Solid State Chemistry, 2014, 42(4):106-117.
|
[9] |
HONG Y, TANG Z, ZHANG Z. Enhanced electrochemical properties of LiMnPO4/C composites by tailoring polydopamine-derived carbon coating[J]. Electrochimica Acta, 2015, 176:369-377.
|
[10] |
DELACOURT C, POIZOT P, MORCRETTE M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders[J]. Chemistry of Materials, 2004, 16(1):93-99.
|
[11] |
KWON N H, FROMNM K M. Enhanced electrochemical performance of 4 nanorods with a reduced amount of carbon as a cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 69:38-44.
|
[12] |
KOU L, CHEN F, TAO F, et al. High rate capability and cycle performance of Ce-doped LiMnPO4/C via an efficient solvothermal synthesis in water/diethylene glycol system[J]. Electrochimica Acta, 2015, 173:721-727.
|
[13] |
WANG C, BI Y, LIU Y, et al. Investigation of (1-x)LiMnPO4·xLi3V2(PO4)3/C:phase composition and electrochemical performance[J]. Journal of Power Sources, 2014, 263(1):332-337.
|
[14] |
WANG H L, YANG Y, LIANG Y Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie International Edition, 2011, 50(32):7364-7368.
|
[15] |
WANG D, OUYANG C, DREZEN T I, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. Journal of the Electrochemical Society, 2010, 157(2):225-229.
|
[16] |
YANG X, MI Y, ZHANG W, et al. Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process[J]. Journal of Power Sources, 2015, 275(1):823-830.
|
[17] |
SU J, LIU Z, LONG Y, et al. Enhanced electrochemical performance of LiMnPO4/C prepared by microwave-assisted solvothermal method[J]. Electrochimica Acta, 2015, 173(10):559-565.
|
[18] |
MURUGAN A V, MURALIGANTH T, MANTHIRAM A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4(M=Mn, Fe, and Co) cathodes[J]. Journal of the Electrochemical Society, 2009, 156(2):79-83.
|
[19] |
QIN Z, ZHOU X, XIA Y, et al. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22:21144-21153.
|
[20] |
DUAN J, CAO Y, JIANG J, et al. Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance[J]. Journal of Power Sources, 2014, 268(5):146-152.
|
[21] |
GU Y, WANG H, ZHU Y, et al. Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries[J]. Solid State Ionics, 2015, 274:106-110.
|
[22] |
ZHANG W, SHAN Z, ZHU K. et al. LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance Li-ion batteries[J]. Electrochimica Acta, 2015, 153(20):385-392.
|
[23] |
LIU T, XIA Q, LU W, et al. A novel method of preparing LiMPO4-C nano particles with organic P source[J]. Electrochimica Acta, 2015, 174(20):120-126.
|
[24] |
WANG Y, YANG Y, YANG Y, et al. Enhanced electrochemical performance of unique morphological LiMnPO4 cathode material prepared by solvothermal method[J]. Solid State Communications, 2010, 150(1/2):81-85.
|
[25] |
ZHENG J, NI L, LU Y, et al. High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction[J]. Journal of Power Sources, 2015, 282(15):444-451.
|
[26] |
LIU Y, LIU P, WU D, et al. Boron-doped, carbon-coated SnO2 /graphene nanosheets for enhanced lithium storage[J]. Chemistry A European Journal, 2015, 21(14):5617-5622.
|
[27] |
HAN S, ZHAO Y, TANG Y, et al. Ternary MoS2/SiO2/graphene hybrids for high-performance lithium storage[J]. Carbon, 2015, 81:203-209.
|
[28] |
FATHOLLAHI F, JAVANBAKHT M, OMIDVAR H, et al. LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance[J]. Journal of Alloys and Compounds, 2015, 643(15):40-48.
|
[29] |
JIANG Y, XU W, CHEN D, et al. Graphene modified Li3V2(PO4)3 as a high-performance cathode material for lithium ion batteries[J]. Electrochimica Acta, 2012, 85(15):377-383.
|
[30] |
JIANG Y, LIU R, XU W, et al. A novel graphene modified LiMnPO4 as a performance-improved cathode material for lithium-ion batteries[J]. Journal of Materials Research, 2013, 28(18):2584-2589.
|
[31] |
JIANG Y, LU M, LING X, et al. One-step hydrothermal synthesis of three-dimensional porous graphene aerogels/sulfur nanocrystals for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2015, 645(5), 509-516.
|
[32] |
ZHAO B, LIU R, CAI X, et al. Nanorod-like Fe2O3/graphene composite as a high-performance anode material for lithium ion batteries[J]. Journal of Applied Electrochemistry, 2014, 44(1):53-60.
|
[33] |
ZHU J, HE J. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(3):1770-1776.
|
[34] |
ZHANG Y, LIU Y, FU S, et al. Hydrothermally controlled growth of MnPO4·H2O single-crystal rods[J]. Bulletin of the Chemical Society of Japan, 2006, 79:270-275.
|
[35] |
LIU C, WU X, WU W, et al. Preparation of nanocrystalline LiMnPO4 via a simple and novel method and its isothermal kinetics of crystallization[J]. Journal of Materials Science, 2011, 46(8):2474-2478.
|
[36] |
DING Y, JIANG Y, XU F, et al. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method[J]. Electrochemistry Communications, 2010, 12(1):10-13.
|