CIESC Journal ›› 2017, Vol. 68 ›› Issue (3): 925-931.DOI: 10.11949/j.issn.0438-1157.20161559
Previous Articles Next Articles
XU Yuan, ZHANG Mingqing
Received:
2016-11-04
Revised:
2016-11-08
Online:
2017-03-05
Published:
2017-03-05
Contact:
10.11949/j.issn.0438-1157.20161559
Supported by:
supported by the National Natural Science Foundation of China (61573051,61472021),the Open Fund of the State Key Laboratory of Software Development Environment (SKLSDE-2015KF-01) and the Fundamental Research Funds for Central Universities of China (PT1613-05).
徐圆, 张明卿
通讯作者:
徐圆,xuyuan@mail.buct.edu.cn
基金资助:
国家自然科学基金项目(61573051,61472021);软件开发环境国家重点实验室开放课题(SKLSDE-2015KF-01);中央高校基本科研业务费专项资金项目(PT1613-05)。
CLC Number:
XU Yuan, ZHANG Mingqing. Research and application of interval prediction method for complex processes based on principal component independent analysis and mixed kernel RVM[J]. CIESC Journal, 2017, 68(3): 925-931.
徐圆, 张明卿. 基于主元独立性分析与混合核RVM的复杂过程区间预测方法研究及应用[J]. 化工学报, 2017, 68(3): 925-931.
[1] | FARUK D O. A hybrid neural network and ARIMA model for water quality time series prediction[J]. Engineering Applications of Artificial Intelligence, 2010, 23(4):586-594. |
[2] | XIONG T, BAO Y, HU Z, et al. Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms[J]. Information Sciences, 2015, 305:77-92. |
[3] | KHOSRAVI A, MAZLOUMI E, NAHAVANDI S, et al. Prediction intervals to account for uncertainties in travel time prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2):537-547. |
[4] | NIX D A, WEIGEMD A S. Estimating the mean and variance of the target probability distribution[C]//IEEE World Congress on IEEE International Conference on Neural Networks. 1994:55-60 |
[5] | LI P, DIMITRIS N. Bootstrap prediction intervals for linear, nonlinear and nonparametric autoregressions[J]. Journal of Statistical Planning and Inference, 2014, 177:1-27. |
[6] | TRUCIOS C, HOTTA L K. Bootstrap prediction in univariate volatility models with leverage effect[J]. Mathematics and Computers in Simulation, 2016, 120:91-103. |
[7] | 党宏涛, 杜祖良, 任宏文, 等. 基于Bootstrap方法的平台惯导系统标定参数重复性区间预测[J]. 中国惯性技术学报, 2013, 21(3):411-414. DANG H T, DU Z L, REN H W, et al. Repeatability interval prediction for calibrated parameters of INS based on Bootstrap method[J]. Journal of Chinese Inertial Technology, 2013, 21(3):411-414. |
[8] | WANG C, NIU M, SONG Y H, et al. Pareto optimal prediction intervals of electricity price[J]. IEEE Transactions on Power Systems, 2016, 32:1. |
[9] | 李知艺, 丁剑鹰, 吴迪, 等. 电力负荷区间预测的集成极限学习机方法[J]. 华北电力大学学报, 2014, 41(2):78-88. LI Z Y, DING J Y, WU D, et al. An ensemble model of the extreme learning machine for load interval prediction[J]. Journal of North China Electric Power University, 2014, 41(2):78-88. |
[10] | WAN C, XU Z, PINSON P, et al. Probabilistic forecasting of wind power generation using extreme learning machine[J]. IEEE Transactions on Power Systems, 2014, 29(29):1033-1044. |
[11] | VAPNIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer-Verlag, 1995:52-123. |
[12] | SHRIVASTAVA N A, KHOSRAVI A, PANIGRAHI B K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines[J]. IEEE Transactions on Industrial Informatics, 2015, 11(2):322-331. |
[13] | ZHAO J H, DONG Z Y, XU Z, et al. A statistical approach for interval forecasting of the electricity price[J]. IEEE Transactions on Power Systems, 2008, 23(2):267-276. |
[14] | DE B K, DE B J, SUYKENS J A. Approximate confidence and prediction intervals for least squares support vector regression[J]. IEEE Transactions on Neural Networks, 2010, 22(1):110-120. |
[15] | CHENG Q, TEZCAN J, CHENG J. Confidence and prediction intervals for semiparametric mixed-effect least squares support vector machine[J]. Pattern Recognition Letters, 2014, 40(40):88-95. |
[16] | KHOSRAVI A, NAHAVANDI S, CREIGHTON D, et al. Lower upper bound estimation method for construction of neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks, 2011, 22(3):337-46. |
[17] | HAO Q, SRINIVASAN D, KHOSRAVI A. Uncertainty handling using neural network-based prediction intervals for electrical load forecasting[J]. Energy, 2014, 73(7):916-925. |
[18] | ZHANG G, WU Y, WONG K P, et al. An advanced approach for construction of optimal wind power prediction intervals[J]. IEEE Transactions on Power Systems, 2015, 30(5):2706-2715. |
[19] | HAO Q, SRINIVASAN D, KHOSRAVI A. Short-Term load and wind power forecasting using neural network-based prediction intervals[J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(2):303-315. |
[20] | KAVOUSI-FARD A, KHOSRAVI A, NAHAVANDI S. A New fuzzy-based combined prediction interval for wind power forecasting[J]. IEEE Transactions on Power Systems, 2015, 31(1):1-9. |
[21] | WAN C, XU Z, PINSON P, et al. Optimal prediction intervals of wind power generation[J]. IEEE Transactions on Power Systems, 2014, 29(3):1166-1174. |
[22] | HOSEN M, KHOSRAVI A, NAHAVANDI S, et al. Prediction interval-based neural network modelling of polystyrene polymerization reactor-a new perspective of data-based modelling[J]. Chemical Engineering Research & Design, 2014, 92(11):2041-2051. |
[23] | 韩帅, 李树刚. 基于区间预测模型的流感趋势预测[J]. 计算机仿真, 2014, 31(9):237-242. HAN S, LI S G. Influenza trends forecast based on interval prediction model[J]. Computer Simulation, 2014, 31(9):237-242. |
[24] | SCHLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5):1299-1319. |
[25] | 李海波, 柴天佑, 岳恒. 浮选工艺指标KPCA-ELM软测量模型及应用[J]. 化工学报, 2012, 63(9):2892-2898. LI H B, CHAI T Y, YUE H. Soft sensor of technical indices based on KPCA-ELM and application for flotation process[J]. CIESC Journal, 2012, 63(9):2892-2898. |
[26] | STEFATOS G, HAMZA A B. Dynamic independent component analysis approach for fault detection and diagnosis[J]. Expert Systems with Applications, 2010, 37(12):8606-8617. |
[27] | KANO M, HASEBE S, HASHIMOTO I, et al. Evolution of multivariate statistical process control:application of independent component analysis and external analysis[J]. Computers and Chemical Engineering, 2004, 28(6/7):1157-1166. |
[28] | MIANJI F A, ZHANG Y. Robust hyperspectral classification using relevance vector machine[J]. IEEE Transactions on Geoscience & Remote Sensing, 2011, 49(6):2100-2112. |
[29] | TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. Journal of Machine Learning Research, 2001, 1(3):211-244. |
[30] | 杨树仁, 沈洪远. 基于相关向量机的机器学习算法研究与应用[J]. 计算技术与自动化, 2010, 29(1):43-47. YANG S R, SHEN H Y. Research and application of machine learning algorithm based on relevance vector machine[J]. Computing Technology and Automation, 2010, 29(1):43-47. |
[1] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[2] | Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM [J]. CIESC Journal, 2022, 73(3): 1291-1299. |
[3] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[4] | Jiaqing ZHANG, Zhaohui LIU, Yu LI, Chenyang SONG. Viscosity measurements and prediction model construction for liquid JP-10 at high-temperature conditions [J]. CIESC Journal, 2022, 73(1): 153-161. |
[5] | Xiehe YANG, Wenfeng SHEN, Yang ZHANG, Hai ZHANG, Jiansheng ZHANG, Junfu LYU. Numerical investigation and prediction models for methanol-air laminar flame speed [J]. CIESC Journal, 2019, 70(8): 3011-3020. |
[6] | Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA [J]. CIESC Journal, 2019, 70(7): 2594-2605. |
[7] | Jing WU, Yiqi LIU, Jian LIU, Daoping HUANG, Yu QIU, Guangping YU. Study on the soft sensor of multi-kernel relevance vector machine based on time difference [J]. CIESC Journal, 2019, 70(4): 1472-1484. |
[8] | DENG Xiaogang, DENG Jiawei, CAO Yuping, WANG Lei. Double-level local KPCA method for incipient fault detection in nonlinear process [J]. CIESC Journal, 2018, 69(7): 3092-3100. |
[9] | HAN Zhonghe, MEI Zhongkai, LI Peng. Working fluid selection and multi-objective optimization of organic Rankine cycle with variable turbine efficiency [J]. CIESC Journal, 2018, 69(6): 2603-2611. |
[10] | CHANG Peng, QIAO Junfei, WANG Pu, GAO Xuejin, LI Zheng. Monitoring non-Gaussian and non-linear batch process based on multi-way kernel entropy component analysis [J]. CIESC Journal, 2018, 69(3): 1200-1206. |
[11] | LIU Shurui, PENG Hui, LI Shuai, ZHOU Xiaofeng. Fault detection based on IJB-PCA-ICA [J]. CIESC Journal, 2018, 69(12): 5146-5154. |
[12] | GAO Kaige, LEI Yuzhuang, LI Hainian, ZHOU Yong. Prediction of agglomerate size for ultrafine particles in acoustic spouted fluidized-bed with draft tube [J]. CIESC Journal, 2017, 68(6): 2290-2297. |
[13] | LIU Chao, NIU Peifeng, DUAN Xiaolong, LI Guoqiang, ZHANG Xianchen. Determination of optimal initial steam pressure of turbine based on relevance vector machine [J]. CIESC Journal, 2016, 67(9): 3812-3816. |
[14] | HAN Min, ZHANG Zhankui. Fault detection and diagnosis method based on modified kernel principal component analysis [J]. CIESC Journal, 2015, 66(6): 2139-2149. |
[15] | JIANG Wei, WANG Xin, WANG Zhenlei. LTSA and combined index based MICA and PCA process monitoring and application [J]. CIESC Journal, 2015, 66(12): 4895-4903. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 343
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 427
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||