[1] |
YU S H, LEE D J, PARK M, et al. Hybrid cellular nanosheets for high-performance lithium-ion battery anodes [J]. Journal of the American Chemical Society, 2015, 137 (37): 11954-11961.
|
[2] |
CHANG H H, CHANG C C, SU C Y, et al. Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries [J]. Journal of Power Sources, 2008, 185 (1): 466-472.
|
[3] |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4 (9): 3243-3262.
|
[4] |
JUNG H G, JANG M W, HASSOUN J, et al. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery [J]. Nature Communications, 2011, 2: 516.
|
[5] |
RAI A K, ANH L T, GIM J, et al. Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery [J]. Journal of Power Sources, 2013, 244: 435-441.
|
[6] |
PAN A Q, WANG Y P, XU W, et al. High-performance anode based on porous Co3O4 nanodiscs [J]. Journal of Power Sources, 2014, 255 (6): 125-129.
|
[7] |
ZHANG M, QU B H, LEI D, et al. A green and fast strategy for the scalable synthesis of Fe2O3/graphene with significantly enhanced Li-ion storage properties [J]. Journal of Materials Chemistry, 2012, 22 (9): 3868-3874.
|
[8] |
PAN L, WANG K X, ZHU X D. Hierarchical assembly of SnO2 nanowires on MnO2 nanosheets: a novel 1/2D hybrid architecture for high-capacity, reversible lithium storage [J]. Journal of Materials Chemistry A, 2015, 3 (12): 6477-6483.
|
[9] |
FENG Y Y, ZHANG H J, LI W X, et al. Targeted synthesis of novel hierarchical sandwiched NiO/C arrays as high-efficiency lithium ion batteries anode [J]. Journal of Power Sources, 2016, 301: 78-86.
|
[10] |
WEN W, WU J M, CAO M H. Rapid one-step synthesis and electrochemical performance of NiO/Ni with tunable macroporous architectures [J]. Nano Energy, 2013, 2 (6): 1383-1390.
|
[11] |
SUN X L, YAN C L, CHEN Y, et al. Three-dimensionally "curved" NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes [J]. Adv. Energy Mater., 2014, 4 (4): 1-6.
|
[12] |
NI S B, LV X H, MA J J, et al. A novel electrochemical reconstruction in nickel oxide nanowalls on Ni foam and the fine electrochemical performance as anode for lithium ion batteries [J]. Journal of Power Sources, 2014, 270 (3): 564-568.
|
[13] |
WANG B, CHENG J L, WU Y P, et al. Porous NiO fibers prepared by electrospinning as high performance anode materials for lithium ion batteries [J]. Electrochemistry Communications, 2012, 23 (8): 5-8.
|
[14] |
LIU J, XUE D F. Hollow nanostructured anode materials for Li-ion batteries [J]. Nanoscale Research Letters, 2010, 5 (10): 1525-1534.
|
[15] |
LI C C, LIU Y L, LI L M, et al. A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose [J]. Talanta, 2008, 77 (1): 455-459.
|
[16] |
CUI Z Z, YIN H Y, NIE Q L, et al. Hierarchical flower-like NiO hollow microspheres for non-enzymatic glucose sensors [J]. Journal of Electroanalytical Chemistry, 2015, 757: 51-57.
|
[17] |
ZHU G X, XI C Y, XU H, et al. Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor [J]. RSC Advances, 2012, 2: 4236-4241.
|
[18] |
WANG X J, WANG G, ZHAI G H, et al. Nickel oxide nanoparticle-assembled microspheres with a high rate capability for lithium storage [J]. Australian Journal of Chemistry, 2015, 68 (6): 964-969.
|
[19] |
HUANG X H, WU J B, LIN Y, et al. NiO hollow spheres with stable capacity retention and enhanced rate capability for lithium ion batteries [J]. Int. J. Electrochem. Sci., 2013, 8 (2): 1691-1700.
|
[20] |
SONG P, WANG Q, YANG Z X. Acetone sensing characteristics of ZnO hollow spheres prepared by one-pot hydrothermal reaction [J]. Materials Letters, 2012, 86 (11): 168-170.
|
[21] |
QI J, ZHAO K, LI G D, et al. Multi-shelled CeO2 hollow microspheres as superior photocatalysts for water oxidation [J]. Nanoscale, 2014, 6 (8): 4072-4077.
|
[22] |
WU X, AN X, XIE X M. Preparation of Ni(HCO3)2 and its catalytic performance in synthesis of benzoin ethyl ether [J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (5): 1440-1445.
|
[23] |
WANG B B, WANG G, CHENG X M, et al. Synthesis and electrochemical investigation of core-shell ultrathin NiO nanosheets grown on hollow carbon microspheres composite for high performance lithium and sodium ion batteries [J]. Chemical Engineering Journal, 2016, 306: 1193-1202.
|
[24] |
WU C, ZHUANG Q C, WU Y X, et al. Facile synthesis of Fe3O4 hollow spheres/carbon nanotubes composites for lithium ion batteries with high-rate capacity and improved long-cycle performance [J]. Materials Letters, 2013, 113 (24): 1-4.
|
[25] |
POIZOT P, GRUGEON S, DUPONT L, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407 (6803): 496-499.
|
[26] |
GONG Y L, ZHANG M, CAO G Z. Chemically anchored NiOx-carbon composite fibers for Li-ion batteries with long cycle-life and enhanced capacity [J]. RSC Adv., 2015, 5 (34): 26521-26529.
|
[27] |
CHEN M H, XIA X H, QI M L, et al. Controllable synthesis of hierarchical porous nickel oxide sheets arrays as anode for high-performance lithium ion batteries [J]. Electrochimica Acta, 2015, 184 (1): 17-23.
|
[28] |
LI Q, HUANG G, YIN D M, et al. Synthesis of porous NiO nanorods as high-performance anode materials for lithium-ion batteries [J]. Particle & Particle Systems Characterization, 2016, 33 (10): 764-770.
|
[29] |
YANG W F, WANG J W, MA W S, et al. Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes [J]. Journal of Power Sources, 2016, 333: 88-98.
|
[30] |
MA X J, WANG N N, QIAN Y T, et al. Large-scale synthesis of NiO polyhedron nanocrystals as high-performance anode materials for lithium ion batteries [J]. Materials Letters, 2016, 168: 5-8.
|
[31] |
LV P P, ZHAO H L, ZENG Z P, et al. Self-assembled three-dimensional hierarchical NiO nano/microspheres as high-performance anode material for lithium ion batteries [J]. Applied Surface Science, 2015, 329: 301-305.
|
[32] |
李延伟, 李世玉, 谢志平, 等. 电化学沉积制备V2O5薄膜电极的表面结构及储钠性能 [J]. 化工学报, 2016, 67 (11): 4771-4778.
|
|
LI Y W, LI S Y, XIE Z P, et al. Surface morphology and sodium storage performance of V2O5 thin film electrode prepared by CTAB assisted electrodeposition [J]. CIESC Journal, 2016, 67 (11): 4771-4778.
|
[33] |
SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343 (6176): 1210-1211.
|
[34] |
LIU T C, PELL W G, CONWAY B E, et al. Behavior of molybdenum nitrides as materials for electrochemical capacitors comparison with ruthenium oxide [J]. Journal of the Electrochemical Society, 1998, 145 (6): 1882-1888.
|
[35] |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles [J]. J. Phys. Chem. C, 2007, 111 (40): 14925-14931.
|