CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2621-2630.DOI: 10.11949/j.issn.0438-1157.20170085
Previous Articles Next Articles
LIU Shuzhi, HAN Wei, LIU Xianjun, CUI Baochen
Received:
2017-01-18
Revised:
2017-03-24
Online:
2017-07-05
Published:
2017-07-05
Contact:
10.11949/j.issn.0438-1157.20170085
Supported by:
supported by the Natural Science Foundation of Heilongjiang Province (B2015011) and the Foundation of Northeast Petroleum University.
刘淑芝, 韩伟, 刘先军, 崔宝臣
通讯作者:
崔宝臣
基金资助:
黑龙江省自然科学基金项目(B2015011);东北石油大学科研启动基金项目。
CLC Number:
LIU Shuzhi, HAN Wei, LIU Xianjun, CUI Baochen. Advances in electrochemical synthesis of ammonia[J]. CIESC Journal, 2017, 68(7): 2621-2630.
刘淑芝, 韩伟, 刘先军, 崔宝臣. 电化学合成氨研究进展[J]. 化工学报, 2017, 68(7): 2621-2630.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgxb.cip.com.cn/EN/10.11949/j.issn.0438-1157.20170085
[1] | NAKAJIMA J, SEKIGUCHI H. Synthesis of ammonia using microwave discharge at atmospheric pressure[J]. Thin Solid Films, 2008, 516(13): 4446-4451. |
[2] | BAI M D, BAI X X, ZHANG Z T. Synthesis of NH3 by non equilibrium plasma under normal pressure[J]. Chin. J. Appl. Chem., 1998, 15(5): 71-73. |
[3] | PICKETT C J, TALARMIN J. Electrosynthesis of ammonia[J]. Nature, 1985, 317(6038): 652-653. |
[4] | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production[J]. Int. J. Hydrogen Energ., 2013, 38: 14576-14594. |
[5] | SHIPMAN M A, SYMES M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 286: 57-68. |
[6] | AMAR I A, LAN R, PETIT C T G, et al. Solid-state electrochemical synthesis of ammonia: a review[J] J. Solid State Electrochem., 2011, 15: 1845-1860. |
[7] | FURUYA N, HIROSHI Y. Nitrogen fixation using a gas diffusion eletrode loaded Fe-phthalocyanine[J]. Denki Kagaku, 1989, 57(3): 261-262. |
[8] | FURUYA N, HIROSHI Y. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fe-phthalocyanine[J]. Electroanal. Chem., 1989, 263: 171-174. |
[9] | FURUYA N, HIROSHI Y. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by metal phthalocyanine[J]. Electroanal. Chem., 1989, 272: 263-266. |
[10] | KORDALI V, KYRIACOU G, LAMBROU C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chem. Comm., 2000, 31(48): 1673-1674. |
[11] | CHEN S M, PERATHONER S, AMPELLI C, et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst[J]. Angew. Chem., 2017, 129(10): 2743-2747. |
[12] | K?LELI F, KAYAN D B. Low overpotential reduction of dinitrogen to ammonia in aqueous media[J]. Electroanal. Chem., 2010, 638:119-122. |
[13] | TSUNETO A, KUDO A, SAKATA T. Lithium-mediated electrochemical reduction of high pressure N2 to NH3[J]. Electroanal. Chem., 1994, 367: 183-188. |
[14] | KIM K, LEE N, YOO C Y, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(7): F610-F612. |
[15] | KIM K, YOO C Y, KIM J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(14): F1523-F1526. |
[16] | PAPPENFUS T M, LEE K, THOMA L M, et al. Wind to ammonia: electrochemical processes in room temperature ionic liquids[J]. ECS Trans., 2009, 16: 89-93. |
[17] | STOTZ S, WAGNER C. Die löslichkeit von wasserdampf und wasserstoff in festen oxiden[J]. Ber. Bunsenges Phys. Chem., 1966, 70(8): 781-788. |
[18] | IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production[J]. Solid State Ionics, 1981, 3/4: 359-363. |
[19] | MARNELLOS G, STOUKIDES M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100. |
[20] | NIGARA Y, YASHIRO K, KAWADA T, et al. The atomic hydrogen permeability in (CeO2)0.85(CaO)0.15 at high temperatures[J]. Solid State Ionics, 2001, 145(1/2/3/4): 365-370. |
[21] | LIU R Q, XIE Y H, WANG J D, et al. Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-δ(M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature[J]. Solid State Ionics, 2006, 177(1/2): 73-76. |
[22] | 刘瑞泉, 谢亚红, 李志杰, 等. 质子导体 (Ce0.8La0.2)1-xCaxO2-δ在合成氨中的应用[J]. 物理化学学报, 2005, 21(9): 967-970.LIU R Q, XIE Y H, LI Z J, et al. Application of proton conductors (Ce0.8La0.2)1-xCaxO2-δ in synthesis of ammonia[J]. Acta Phys.-Chim. Sin., 2005, 21(9): 967-970. |
[23] | OMATA T, OKUDA Y M. Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure[J]. J. Electrochem. Soc., 2001, 148(6): 252-261. |
[24] | XIE Y H, WANG J D, LIU R Q, et al. Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure[J]. Solid State Ionics, 2004, 168(1): 117-121. |
[25] | 谢亚红, 刘瑞泉, 王吉德, 等. Ca、Ce 双掺杂烧绿石型复合氧化物的合成及离子导电性能研究[J]. 无机化学学报, 2004, 20(5): 551-554.XIE Y H, LIU R Q, WANG J D, et al. Synthesis and electrical properties of Ca and Ce doped pyrochlore-type oxides[J]. Chin. J. Inorg. Chem., 2004, 20(5): 551-554. |
[26] | ZUO C D, ZHA S W, LIU M L, et al. Ba(Zr0.1Ce0.7Y0.2)O3-δ as an electrolyte for low-temperature solid-oxide fuel cells[J]. Adv. Mater., 2006, 18(24): 3318-3320. |
[27] | 宿新泰, 刘瑞泉, 王吉德. SrCe0.95Y0.05O3-δ在中温区的电化学性质及其在常压合成氨中的应用[J]. 化学学报, 2003, 61(4): 505-509.SU X T, LIU R Q, WANG J D. Electrochemical properties of SrCe0.95Y0.05O3-δ at intermediate temperature and its application to ammonia synthesis at atmospheric pressure[J]. Acta Chim. Sinica, 2003, 61(4): 505-509. |
[28] | MA G L, ZHANG F, ZHU J L, et al. Proton conduction in La0.9Sr0.1Ga0.8Mg0.2O3-a[J]. Chem. Mater., 2006, 18(25): 6006-6011. |
[29] | 陈成, 王文宝, 马桂林. La0.9M0.1Ga0.8Mg0.2O3-a 的中温质子导电性及其在常压合成氨中的应用[J]. 化学学报, 2009, 67(7): 623-628.CHEN C, WANG W B, MA G L. Proton conduction in La0.9M0.1Ga0.8Mg0.2O3-a at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure[J]. Acta Chim. Sinica, 2009, 67(7): 623-628. |
[30] | CHEN C, MA G. Proton conduction in BaCe1-xGdxO3-a at intermediate temperature and its application to synthesis of ammonia at atmospheric pressure[J]. J. Alloys Compd., 2009, 485(1/2): 69-72. |
[31] | LI Z J, LIU R Q, WANG J D, et al. Preparation of BaCe0.8Gd0.2O3-δ by the citrate method and its application in the synthesis of ammonia at atmospheric pressure[J]. J. Solid State Electrochem., 2005, 9(4): 201-204. |
[32] | WANG W, CAO X B, GAO W J, et al. Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3-a membrane[J]. J. Memb. Sci., 2010, 360(1/2): 397-403. |
[33] | LIU J W, LI Y D, WANG W B, et al. Proton conduction at intermediate temperature and its application in ammonia synthesis at atmospheric pressure of BaCe1-xCaxO3-a[J]. J. Mater. Sci., 2010, 45(21): 5860-5864. |
[34] | 张蔚, 宿新泰, 刘瑞泉. 多层膜结构BaCe0.9Nd0.1O3-δ的制备及其在常压合成氨中的应用[J]. 中国稀土学报, 2006, 24(1): 102-106. ZHANG W, SU X T, LIU R Q. Synthesis of BaCe0.9Nd0.1O3-δ multilayer membrane and its application to ammonia synthesis at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2006, 24(1): 102-106. |
[35] | LI Z J, LIU R Q, WANG J D, et al. Preparation of double-doped BaCeO3 and its application in the synthesis of ammonia at atmospheric pressure[J]. Sci. Tech. Adv. Mater., 2007, 8(7/8): 566-570. |
[36] | YUN D S, JOO J H, YU J H, et al. Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst[J]. J. Power Sources, 2015, 284: 245-251. |
[37] | 李志杰, 王吉德, 刘瑞泉, 等. 铈、钇双掺杂钙钛矿型复合氧化物的合成及其在常压合成氨中的应用[J]. 中国稀土学报, 2005, 23(1): 62-67.LI Z J, WANG J D, LIU R Q, et al. Synthesis of Ce and Y doped perovskite-type oxides and its application in synthesis of ammonia at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2005, 23(1): 62-67. |
[38] | YIN J L, WANG X W, XU J H, et al. Ionic conduction in BaCe0.85-xZrxEr0.15O3-a and its application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2011, 185(1): 6-10. |
[39] | 朱剑莉, 马桂林. BaCe0.8Zr0.10Nd0.10O3-α的质子导电性及在常压合成氨中的应用[J]. 南昌大学学报(理科版), 2012, 36(5): 462-471.ZHU J L, MA G L. Proton conduction in BaCe0.8Zr0.10Nd0.10O3-α and its application to ammonia synthesis at atmospheric pressure[J]. J. Nanchang University (Nat. Sci.), 2012, 36(5): 462-471. |
[40] | 朱剑莉, 马桂林, 占忠亮. 阳极支撑BZCY 电解质及GBFN 阴极膜在常压合成氨中的性能研究[J]. 中国稀土学报, 2012, 30(6): 744-749.ZHU J L, MA G L, ZHAN Z L. Performances of anode-supported BZCY electrolyte and GBFN cathode membranes in ammonia synthesis at atmospheric pressure[J]. J. Chin. Soc. Rare Earths, 2012, 30(6): 744-749. |
[41] | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2015, 275: 110-116. |
[42] | VASILEIOU E, KYRIAKOU V, GARAGOUNIS I, et al. Electrochemical enhancement of ammonia synthesis in a BaZr0.7Ce0.2Y0.1O2.9 solid electrolyte cell[J]. Solid State Ionics, 2016, 288: 357-362. |
[43] | LI Z J, LIU R Q, XIE Y H, et al. A novel method for preparation of doped Ba3(Ca1.18Nb1.82)O9-δ: application to ammonia synthesis at atmospheric pressure[J]. Solid State Ionics, 2005, 176(11/12): 1063-1066. |
[44] | TSUYOSHI M, TOKUJIRO N, TOSHIYUKI N, et al. Electrolytic synthesis of ammonia in molten salts under atmospheric pressure[J]. J. Am. Chem. Soc., 2003, 125(2): 334-335. |
[45] | KIM K, KIM J N, YOON H C, et al. Effect of electrode material on the electrochemical reduction of nitrogen in a molten LiCl-KCl-CsCl system[J]. Int. J. Hydrogen Energy, 2015, 40(16): 5578-5582. |
[46] | KIM K, YOON H C, KIM J N, et al. Electrochemical synthesis of ammonia from water and nitrogen catalyzed by nano-Fe2O3 and CoFe2O4 suspended in a molten LiCl-KCl-CsCl electrolyte[J]. Korean J. Chem. Eng., 2016, 33(6): 1777-1780. |
[47] | LICHT S, CUI B C, WANG B H, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640. |
[48] | LI F F, LICHT S. Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3[J]. Inorg. Chem., 2014, 53: 10042-10044. |
[49] | CUI B H, ZHANG J H, LIU S Z, et al. Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbons[J]. Green Chem., 2017, 19: 298-304. |
[50] | 王本辉, 刘瑞泉, 王吉德, 等. Ce0.8Y0.2O1.9-Ca3(PO4)2-K3PO4 复合电解质在中温区的质子导电性及在常压合成氨中的应用[J]. 无机化学学报, 2005, 21(10): 1551-1554.WANG B H, LIU R Q, WANG J D, et al. Doped Ceria-Ca3(PO4)2-K3PO4 composite electrolyte: proton conductivity at intermediate temperature and application in atmospheric pressure ammonia synthesis[J]. Chin. J. Inorg. Chem., 2005, 21(10): 1551-1554. |
[51] | WANG B H, WANG J D, LIU R Q, et al. Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria-Ca3(PO4)2-K3PO4 composite electrolyte and its proton conductivity at intermediate temperature[J]. J. Solid State Electrochem., 2006, 11 (1): 27-31. |
[52] | 刘玉星, 刘瑞泉, 王吉德. La0.9Sr0.1Al0.9Mg0.1O3-δ-Ca3(PO4)2-K3PO4 复合电解质的合成及在常压天然气合成氨中的应用[J]. 无机化学学报, 2007, 23(2): 339-342.LIU Y X, LIU R Q, WANG J D. La0.9Sr0.1Al0.9Mg0.1O3-δ- Ca3(PO4)2-K3PO4 composite electrolyte: preparation and application to ammonia synthesis at atmospheric pressure[J]. Chin. J. Inorg. Chem., 2007, 23 (2): 339-342. |
[53] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte[J]. Solid State Ionics, 2011, 182(1): 133-138. |
[54] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia based on Co3Mo3N catalyst and LiAlO2-(Li,Na,K)2CO3 composite electrolyte[J]. Electrocatalysis, 2015, 6(3): 286-294. |
[55] | AMAR I A, LAN R, PETIT C T G, et al. Electrochemical synthesis of ammonia using Fe3Mo3N catalyst and carbonate-oxide composite electrolyte[J]. Int. J. Electrochem. Sci., 2015, 10: 3757-3766. |
[56] | AMAR I A, PETIT C T G, ZHANG L, et al. Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode[J]. Solid State Ionics, 2011, 201(1): 94-100. |
[57] | AMAR I A, PETIT C T G, MANN G, et al. Electrochemical synthesis of ammonia from N2 and H2O based on (Li, Na, K)2CO3-Ce0.8Gd0.18Ca0.02O2-δ composite electrolyte and CoFe2O4 cathode[J]. Int. J. Hydrogen Energy, 2014, 39(9): 4322-4330. |
[58] | AMAR I A, PETIT C T G, LAN R, et al. Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J]. RSC Adv., 2014, 4(36): 18749-18754. |
[59] | AMAR I A, LAN R, TAO S W. Electrochemical synthesis of ammonia directly from wet N2 using La0.6Sr0.4Fe0.8Cu0.2O3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite catalyst[J]. J. Electrochem. Soc., 2014, 161(6): H350-354. |
[60] | AMAR I A, LAN R, TAO S W. Synthesis of ammonia directly from wet nitrogen using a redox stable La0.75Sr0.25Cr0.5Fe0.5O3-δ- Ce0.8Gd0.18Ca0.02O2-δ composite cathode[J]. RSC Adv., 2015, 5: 38977-38983. |
[61] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air at intermediate temperature[J]. Appl. Catal. B: Environmental, 2014, 152/153: 212-217. |
[62] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δ as catalyst[J]. Electrochim. Acta, 2014, 123: 582-587. |
[63] | LAN R, ALKHAZMI K A, AMAR I A, et al. Synthesis of ammonia directly from wet air using Sm0.6Ba0.4Fe0.8Cu0.2O3-δ as the catalyst[J]. Faraday Discuss., 2015, 182: 353-363. |
[64] | SAITO M, HAYAMIZU K, OKADA T. Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells[J]. J. Phys. Chem. B, 2005, 109(8): 3112-3119. |
[65] | HSU W Y, GIERKE T D. Ion transport and clustering in nafion perfluorinated membranes[J]. J. Memb. Sci., 1983, 13(3): 307-326. |
[66] | XU G C, LIU R Q, WANG J. Electrochemical synthesis of ammonia using a cell with a nafion membrane and SmFe0.7Cu0.3-xNixO3(x = 0—0.3) cathode at atmospheric pressure and lower temperature[J]. Sci. China Ser. B: Chem., 2009, 52(8): 1171-1175. |
[67] | XU G C, LIU R Q. Sm1.5Sr0.5MO4 (M=Ni, Co, Fe) cathode catalysts for ammonia synthesis at atmospheric pressure and low temperature[J]. Chin. J. Chem., 2009, 27(4): 677-680. |
[68] | LIU R Q, XU G C. Comparison of electrochemical synthesis of ammonia by using sulfonated polysulfone and nafion membrane with Sm1.5Sr0.5NiO4[J]. Chin. J. Chem., 2010, 28(1): 139-142. |
[69] | 王进, 刘瑞泉. SDC 和SSC 在低温常压电化学合成氨中的性能研究[J]. 化学学报, 2008, 66(7): 717-721.WANG J, LIU R Q. Property research of SDC and SSC in ammonia synthesis at atmospheric pressure and low temperature[J]. Acta Chim. Sinica, 2008, 66(7): 717-721. |
[70] | 徐艳丽, 刘瑞泉. Sm1.2Sr0. 8Co1-xNix O4 + δ(x = 0.0, 0.1, 0.2) 粉体在低温常压下电化学合成氨中的阴极催化性能[J]. 化学通报, 2010, (9): 809-813.XU Y L, LIU R Q. Cathode catalytic performance of Sm1.2Sr0.8Co1-xNixO4+δ (x = 0.0, 0.1, 0.2) in electrosynthesis ammonia at atmospheric pressure and lower temperature[J]. Chemistry, 2010, (9): 809-813. |
[71] | ZHANG Z F, ZHONG Z P, LIU R Q. Cathode catalysis performance of SmBaCuMO5+δ (M=Fe, Co, Ni) in ammonia synthesis[J]. J. Rare Earths, 2010, 28(4): 556-559. |
[72] | 崔银仓, 刘瑞泉. LSCCF粉体在低温常压电化学合成氨中的阴极催化性能[J]. 新疆大学学报(自然科学版), 2010, 27(4): 473-477.CUI Y C, LIU R Q. Cathode catalytic performance of LSCCF powders in electro synthesis ammonia at atmospheric pressure and lower temperature[J]. J. Xinjiang University (Nat. Sci. Edition), 2010, 27(4): 473-477. |
[73] | LAN R, IRVINE J T S, TAO S W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3:1145. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[6] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[7] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[8] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[14] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[15] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||