[1] |
KANG Y S, KIM S S, HONG S C. Combined process for removal of SO2, NOx, and particulates to be applied to a 1.6-MWe pulverized coal boiler[J]. J. Ind. Eng. Chem., 2015, 30(1):197-203.
|
[2] |
郝吉明, 马广大, 王书肖. 大气污染控制工程[M]. 3版. 北京:高等教育出版社, 2010:378-380. HAO J M, MA G D, WANG S X. Air Pollution Control Engineering[M]. 3rd ed. Beijing:Higher Education Press, 2010:378-380.
|
[3] |
李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5):1789-1796. LI Q, WU Y X, YANG H R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5):1789-1796.
|
[4] |
DJERAD S, TIFOUTI L, CROCOLL M, et al. Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V2O5-WO3/TiO2 catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2004, 208(1/2):257-265.
|
[5] |
MOON H K, TAE HA. A commercial V2O5-WO3/TiO2 catalyst used at an NH3-SCR deNOx process in an oil-fired power plant:cause of an increase in deNOxing and NH3 oxidation performances at low temperatures[J]. Research on Chemical Intermediates, 2011, 37(6):1333-1344.
|
[6] |
王龙飞, 张亚平, 郭婉秋, 等. WO3/TiO2-ZrO2脱硝催化剂制备及其NH3活化机理[J]. 化工学报, 2015, 66(10):3903-3910. WANG L F, ZHANG Y P, GUO W Q, et al. Preparation of WO3/TiO2-ZrO2 catalyst for selective catalytic reduction and mechanism of NH3 activation[J]. CIESC Journal, 2015, 66(10):3903-3910.
|
[7] |
TERESA V S, GREGORIO M, AJTONIO B F. Low-temperature SCR of NOx with NH3 over carbon-ceramic cellular monolith-supported manganese oxides[J]. Catalysis Today, 2001, 69(1/2/3/4):259-264.
|
[8] |
TORRE-ABREU C, HENRIQUES C, RIBEIRO F R, et al. Selective catalytic reduction of NO on copper-exchanged zeolites:the role of the structure of the zeolite in the nature of copper-active sites[J]. Catalysis Today, 1999, 54(4):407-418.
|
[9] |
SUNG H C, HUY H N, GOBINDA G, et al. Effect of microwave-assisted hydrothermal process parameters on formation of different TiO2 nanostructures[J]. Catalysis Today, 2016, 266(1):46-52.
|
[10] |
SUN M, ZHAO T, LI Z, et al. Sol-gel synthesis of macro-mesoporous Al2O3-SiO2-TiO2 monoliths via phase separation route[J]. Ceramics International, 2016, 42(14):15926-15932.
|
[11] |
ZHANG J, LI C, ZHAO L, et al. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and HgO from simulated flue gas[J]. Chemical Engineering Journal, 2017, 313(1):1535-1547.
|
[12] |
YANG P, ZHAO D, DAVID I M, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(1):152-155.
|
[13] |
QU Y, WANG W, JING L, et al. Surface modification of nanocrystalline anatase with CTAB in the acidic condition and its effects on photocatalytic activity and preferential growth of TiO2[J]. Appl. Surf. Sci., 2010, 257(1):151-156.
|
[14] |
HYE S S, CHANGBUM J, SEUNG H K, et al. Mesoporous titania with anatase framework synthesized using polyphenolic structure-directing agent:synthesis domain and catalytic metal loading[J]. Microporous and Mesoporous Materials, 2015, 212(1):117-124.
|
[15] |
MARBERGER A, ELSENER, M, FERRI D, et al. VOx surface coverage optimization of V2O5/WO3-TiO2 SCR catalysts by variation of the V loading and by aging[J]. Catalysts, 2015, 5(4):1704-1720.
|
[16] |
SHAN W, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal. Sci. Technol., 2015, 5(9):4280-4288.
|
[17] |
郭凤, 余剑, 初茉, 等. 溶胶-凝胶原位合成宽活性温度V2O5/TiO2脱硝催化剂[J]. 化工学报, 2014, 65(6):2098-2105. GUO F, YU J, CHU M, et al. Preparation of V2O5/TiO2 catalyst with in-situ sol-gel method for denitration in wide temperature window[J]. CIESC Journal, 2014, 65(6):2098-2105.
|
[18] |
DIEBOLD U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003, 48(5/6/7/8):53-229.
|
[19] |
BONINGARI T, KOIRALA R, SMIRNIOTIS P G. Low-temperature catalytic reduction of NO by NH3 over vanadia-based nanoparticles prepared by flame-assisted spray pyrolysis:influence of various supports[J]. Applied Catalysis B-Environmental, 2013, 140/141(1):289-298.
|
[20] |
MENDIALDUA J, CASANOVA R, BARBAUX Y. XPS studies of V2O5, V6O13, VO2 and V2O3[J]. Journal of Electron Spectroscopy and Related Phenomena, 1995, 71(3):249-261.
|
[21] |
ZHANG S, ZHONG Q, ZHAO W, et al. Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. Chemical Engineering Journal, 2014, 253(1):207-216.
|
[22] |
刘建华, 杨晓博, 张琛, 等. Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4):1287-1293. LIU J H, YANG X B, ZHANG C, et al. Effect of Fe2O3 on surface properties and activities of V2O5-WO3/TiO2 catalysts[J]. CIESC Journal, 2016, 67(4):1287-1293.
|
[23] |
JIANG Y, XING Z, WANG X, et al. Activity and characterization of a Ce-W-Ti oxide catalyst prepared by a single step sol-gel method for selective catalytic reduction of NO with NH3[J]. Flue, 2015, 151(1):124-129.
|
[24] |
LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. J. Phys. Chem. C, 2010, 114(40):16929-16936.
|
[25] |
JING L, XU Z, SUN X, et al. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Applied Surface Science, 2001, 180(3/4):308-314.
|
[26] |
TRONCONI E, NOVA I, CIARDELLI C, et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. Journal of Catalysis, 2007, 245(1):1-10.
|
[27] |
LIU X, LU J, LU X, et al. NH3 selective catalytic reduction of NO:a large surface TiO2 support and its promotion of V2O5 dispersion on the prepared catalyst[J]. Chinese Journal of Catalysis, 2016, 37(1):878-887.
|
[28] |
ARFAUUI J, KHALFALLAH B L, GHORBEL A, et al. Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3[J]. Catalyst Today, 2009, 142(3/4):234-238.
|
[29] |
LI L, SHEN Q, CHENG J, et al. Catalytic oxidation of NO over TiO2 supported platinum clusters(Ⅱ):Mechanism study by in situ FTIR spectra[J]. Catalysis Today, 2010, 158(3/4):361-369.
|
[30] |
ZHAO W, ZHONG Q, ZHANG T J, et al. Characterization study on the promoting effect of F-doping V2O5/TiO2 SCR catalysts[J]. RSC Advances, 2012, 2(20):7906-7914.
|