CIESC Journal ›› 2019, Vol. 70 ›› Issue (8): 3142-3150.DOI: 10.11949/0438-1157.20190234
Previous Articles Next Articles
Shanzhi XIN1(),Fang HUANG1,Xiaoye LIU1,Qingli XU2,Tie MI1()
Received:
2019-03-12
Revised:
2019-05-17
Online:
2019-08-05
Published:
2019-08-05
Contact:
Tie MI
通讯作者:
米铁
作者简介:
辛善志(1984—),男,博士,讲师,<email>szxin@jhun.edu.cn</email>
基金资助:
CLC Number:
Shanzhi XIN, Fang HUANG, Xiaoye LIU, Qingli XU, Tie MI. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste[J]. CIESC Journal, 2019, 70(8): 3142-3150.
辛善志, 黄芳, 刘晓烨, 许庆利, 米铁. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8): 3142-3150.
Add to citation manager EndNote|Ris|BibTeX
样品 | T i/℃ | T h/℃ | (dw/dt)max /(%/min) | (dw/dt)mean/ (%/min) | C r×104/ (%/(℃2·min)) | C b ×103/ (%/(℃·min)) | S×107/ (%/(℃3·min2)) | |
---|---|---|---|---|---|---|---|---|
第一失重峰 | 第二失重峰 | |||||||
230N | 280.3 | 533.4 | 9.03 | 2.97 | 3.24 | 1.2 | 3.74 | 7.29 |
260N | 284.4 | 536.8 | 9.13 | 3.05 | 3.29 | 1.13 | 3.62 | 7.13 |
290N | 294.8 | 541 | 9.5 | 4.14 | 3.44 | 1.09 | 2.86 | 6.95 |
260CO2 | 281.8 | 538.9 | 9.59 | 3.21 | 3.26 | 0.96 | 3.11 | 5.78 |
260O2 | 282.9 | 539.2 | 9.47 | 3.43 | 3.33 | 1.18 | 3.71 | 7.31 |
Table 1 Index of combustion characteristics from combustion of torrefied TCMW
样品 | T i/℃ | T h/℃ | (dw/dt)max /(%/min) | (dw/dt)mean/ (%/min) | C r×104/ (%/(℃2·min)) | C b ×103/ (%/(℃·min)) | S×107/ (%/(℃3·min2)) | |
---|---|---|---|---|---|---|---|---|
第一失重峰 | 第二失重峰 | |||||||
230N | 280.3 | 533.4 | 9.03 | 2.97 | 3.24 | 1.2 | 3.74 | 7.29 |
260N | 284.4 | 536.8 | 9.13 | 3.05 | 3.29 | 1.13 | 3.62 | 7.13 |
290N | 294.8 | 541 | 9.5 | 4.14 | 3.44 | 1.09 | 2.86 | 6.95 |
260CO2 | 281.8 | 538.9 | 9.59 | 3.21 | 3.26 | 0.96 | 3.11 | 5.78 |
260O2 | 282.9 | 539.2 | 9.47 | 3.43 | 3.33 | 1.18 | 3.71 | 7.31 |
样品 | 温度/℃ | 失重量/%(mass) | 反应级数n | 活化能E/(kJ/mol) | 指前因子A/min-1 | 拟合度r |
---|---|---|---|---|---|---|
230N | 265—392 | 52.62 | 2 | 76.07 | 7.75 × 105 | 0.997 |
392—528 | 11.11 | 2 | 38.75 | 4.62 × 102 | 0.998 | |
260N | 279—386 | 48.42 | 2 | 82.76 | 2.52 × 106 | 0.999 |
386—612 | 14.91 | 2 | 26.96 | 31.4 | 0.997 | |
290N | 296—390 | 41.03 | 2 | 94.02 | 1.68 × 107 | 0.999 |
390—656 | 17.07 | 2 | 26.81 | 22.2 | 0.998 |
Table 2 Kinetic parameters from pyrolysis of torrefied TCMW
样品 | 温度/℃ | 失重量/%(mass) | 反应级数n | 活化能E/(kJ/mol) | 指前因子A/min-1 | 拟合度r |
---|---|---|---|---|---|---|
230N | 265—392 | 52.62 | 2 | 76.07 | 7.75 × 105 | 0.997 |
392—528 | 11.11 | 2 | 38.75 | 4.62 × 102 | 0.998 | |
260N | 279—386 | 48.42 | 2 | 82.76 | 2.52 × 106 | 0.999 |
386—612 | 14.91 | 2 | 26.96 | 31.4 | 0.997 | |
290N | 296—390 | 41.03 | 2 | 94.02 | 1.68 × 107 | 0.999 |
390—656 | 17.07 | 2 | 26.81 | 22.2 | 0.998 |
样品 | 温度/℃ | 失重量/% | 反应级数n | 活化能E/(kJ/mol) | 指前因子A/min-1 | 拟合度r |
---|---|---|---|---|---|---|
230N | 277~342 | 40.46 | 1 | 80.45 | 1.53 × 106 | 0.996 |
342~399 | 13.4 | 2 | 28.49 | 29.89 | 0.988 | |
399~481 | 22.47 | 1 | 41.84 | 200.7 | 0.964 | |
260N | 281~341 | 39.14 | 1 | 81.07 | 1.52 × 106 | 0.991 |
341~417 | 19.7 | 2 | 27.17 | 18.14 | 0.985 | |
417~497 | 24.61 | 1 | 38.83 | 96.4 | 0.964 | |
290N | 281~347 | 32.45 | 1 | 97.33 | 3.31 × 107 | 0.981 |
347~429 | 23.24 | 2 | 18.32 | 1.28 | 0.984 | |
429~495 | 23.21 | 1 | 50.58 | 831.4 | 0.99 | |
260CO2 | 283~347 | 41.68 | 2 | 99.49 | 1.02 × 108 | 0.996 |
347~427 | 18.54 | 2 | 27.91 | 24.4 | 0.989 | |
427~487 | 18.53 | 1 | 45.39 | 359.2 | 0.964 | |
260O2 | 281~346 | 43.61 | 2 | 97.18 | 6.52 × 107 | 0.996 |
346~429 | 19.31 | 2 | 26.82 | 18.9 | 0.984 | |
429~493 | 19.34 | 1 | 42.17 | 190.6 | 0.983 |
Table 3 Kinetic parameters from combustion of torrefied TCMW
样品 | 温度/℃ | 失重量/% | 反应级数n | 活化能E/(kJ/mol) | 指前因子A/min-1 | 拟合度r |
---|---|---|---|---|---|---|
230N | 277~342 | 40.46 | 1 | 80.45 | 1.53 × 106 | 0.996 |
342~399 | 13.4 | 2 | 28.49 | 29.89 | 0.988 | |
399~481 | 22.47 | 1 | 41.84 | 200.7 | 0.964 | |
260N | 281~341 | 39.14 | 1 | 81.07 | 1.52 × 106 | 0.991 |
341~417 | 19.7 | 2 | 27.17 | 18.14 | 0.985 | |
417~497 | 24.61 | 1 | 38.83 | 96.4 | 0.964 | |
290N | 281~347 | 32.45 | 1 | 97.33 | 3.31 × 107 | 0.981 |
347~429 | 23.24 | 2 | 18.32 | 1.28 | 0.984 | |
429~495 | 23.21 | 1 | 50.58 | 831.4 | 0.99 | |
260CO2 | 283~347 | 41.68 | 2 | 99.49 | 1.02 × 108 | 0.996 |
347~427 | 18.54 | 2 | 27.91 | 24.4 | 0.989 | |
427~487 | 18.53 | 1 | 45.39 | 359.2 | 0.964 | |
260O2 | 281~346 | 43.61 | 2 | 97.18 | 6.52 × 107 | 0.996 |
346~429 | 19.31 | 2 | 26.82 | 18.9 | 0.984 | |
429~493 | 19.34 | 1 | 42.17 | 190.6 | 0.983 |
1 | Mi T , Yu X M . Study on pyrolysis characteristics of medical waste[J]. Journal of the Energy Institute, 2012, 85(3): 170-175. |
2 | Guo F , Dong Y , Zhang T , et al . Experimental study on herb residue gasification in an air-blown circulating fluidized bed gasifier[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13264-13273. |
3 | Zhang Z B , Lu Q , Ye X N , et al . Selective production of 4-ethyl phenol from low-temperature catalytic fast pyrolysis of herbaceous biomass[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 307-315. |
4 | Wang P , Zhan S , Yu H , et al . The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)[J]. Bioresource Technology, 2010, 101(9): 3236-3241. |
5 | Xin S , Mi T , Liu X , et al . Effect of torrefaction on the pyrolysis characteristics of high moisture herbaceous residues[J]. Energy, 2018, 152: 586-593. |
6 |
Mi T , Chen L , Xin S Z , et al . Activated carbon from the chinese herbal medicine waste by H3PO4 activation[J]. Journal of Nanomaterials, 2015, DOI: 10.1155/2015/910467 .
DOI |
7 | Yang J , Qiu K . Development of high surface area mesoporous activated carbons from herb residues[J]. Chemical Engineering Journal, 2011, 167(1): 148-154. |
8 | Bach Q V , Ø Skreiberg . Upgrading biomass fuels via wet torrefaction: a review and comparison with dry torrefaction[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 665-677. |
9 | Chen W H , Zhuang Y Q , Liu S H , et al . Product characteristics from the torrefaction of oil palm fiber pellets in inert and oxidative atmospheres[J]. Bioresource Technology, 2016, 199: 367-374. |
10 | Tsalidis G A , Voulgaris K , Anastasakis K , et al . Influence of torrefaction pretreatment on reactivity and permanent gas formation during devolatilization of spruce[J]. Energy & Fuels, 2015, 29(9): 5825-5834. |
11 | Bridgeman T G , Jones J M , Shield I , et al . Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties[J]. Fuel, 2008, 87(6): 844-856. |
12 | Proskurina S , Heinimö J , Schipfer F , et al . Biomass for industrial applications: the role of torrefaction[J]. Renewable Energy, 2017, 111: 265-274. |
13 | Sukiran M A , Abnisa F , Wan Daud W M A , et al . A review of torrefaction of oil palm solid wastes for biofuel production[J]. Energy Conversion and Management, 2017,149(Supplement C): 101-120. |
14 | Gil M V , García R , Pevida C , et al . Grindability and combustion behavior of coal and torrefied biomass blends[J]. Bioresource Technology, 2015, 191: 205-212. |
15 | Lasek J A , Kopczyński M , Janusz M , et al . Combustion properties of torrefied biomass obtained from flue gas-enhanced reactor[J]. Energy, 2017, 119: 362-368. |
16 | Sellappah V , Uemura Y , Hassan S , et al . Torrefaction of empty fruit bunch in the presence of combustion gas[J]. Procedia Engineering, 2016, 148: 750-757. |
17 | Uemura Y , Sellappah V , Trinh T H , et al . Torrefaction of empty fruit bunches under biomass combustion gas atmosphere[J]. Bioresource Technology, 2017, 243: 107-117. |
18 | 刘海力 . 厨余垃圾的燃烧与热解特性研究[D]. 广州: 华南理工大学, 2014. |
Liu H L . Study on combustion and pyrolysis characteristics of food waste [D]. Guangzhou: South China University of Technology, 2014. | |
19 | He C , Giannis A , Wang J Y . Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior[J]. Applied Energy, 2013, 111: 257-266. |
20 | 王玉召, 李江鹏 . 生物质与煤混燃的燃烧特性实验研究[J]. 锅炉技术, 2010, 41(5): 72-74. |
Wang Y Z , Li J P . Experiment to co-combustion characteristics of biomass and coal[J]. Boiler Technology, 2010, 41(5): 72-74. | |
21 | Zhang S , Chen T , Li W , et al . Physicochemical properties and combustion behavior of duckweed during wet torrefaction[J]. Bioresource Technology, 2016,218(Supplement C): 1157-1162. |
22 | Ceylan S , Topçu Y . Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis[J]. Bioresource Technology, 2014, 156: 182-188. |
23 | Vyazovkin S , Burnham A K , Criado J M , et al . ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
24 | Xin S , Yang H , Chen Y , et al . Assessment of pyrolysis polygeneration of biomass based on major components: product characterization and elucidation of degradation pathways[J]. Fuel, 2013, 113: 266-273. |
25 | Yang H , Yan R , Chen H , et al . Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
26 | Wang S , Dai G , Yang H , et al . Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
27 | 程辉, 余剑, 姚梅琴, 等 . 木质素慢速热解机理[J]. 化工学报, 2013, 64(5): 1757-1765. |
Cheng H , Yu J , Yao M Q , et al . Mechanism analysis of lignin slow pyrolysis[J]. CIESC Journal, 2013, 64(5): 1757-1765. | |
28 | 司耀辉, 陈汉平, 王贤华, 等 . 农业秸秆燃烧特性及动力学分析[J]. 华中科技大学学报(自然科学版), 2012, 40(1): 128-132. |
Si Y H , Chen H P , Wang X H , et al . Combustion characteristics and kinetic analysis of agriculture straw[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2012, 40(1): 128-132. | |
29 |
Cao W , Li J , Martí-Rosselló T , et al . Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures[J]. Journal of the Energy Institute, 2018, DOI: 10.1016/j.joei.2018.10.004 .
DOI |
30 | Wang C , Wang F , Yang Q , et al . Thermogravimetric studies of the behavior of wheat straw with added coal during combustion[J]. Biomass and Bioenergy, 2009, 33(1): 50-56. |
31 | Xie Z , Ma X . The thermal behaviour of the co-combustion between paper sludge and rice straw[J]. Bioresource Technology, 2013, 146: 611-618. |
32 | Chen W H , Lin B J . Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres[J]. Energy, 2016, 94: 569-578. |
33 | Chen D , Cen K , Cao X , et al . Restudy on torrefaction of corn stalk from the point of view of deoxygenation and decarbonization[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 85-93. |
34 | Li S X , Chen C Z , Li M F , et al . Torrefaction of corncob to produce charcoal under nitrogen and carbon dioxide atmospheres[J]. Bioresource Technology, 2017, 249(39): 348-356. |
35 | Uemura Y , Saadon S , Osman N , et al . Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide[J]. Fuel, 2015, 144: 171-179. |
[1] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[8] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[9] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[10] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[11] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[14] | Jin YU, Binbin YU, Xinsheng JIANG. Study on quantification methodology and analysis of chemical effects of combustion control based on fictitious species [J]. CIESC Journal, 2023, 74(3): 1303-1312. |
[15] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||