1 |
Wu G , More K L , Johnston C M , et al . High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(22): 443-447.
|
2 |
Debe, Mark K . Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7): 43-51.
|
3 |
Bu L Z , Guo S J , Zhang X , et al . Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis[J]. Nat. Commun., 2016, 29(7): 11850.
|
4 |
金燕仙, 施梅勤, 刘委明, 等 . Pt/WC-CNTs催化剂的制备及其对氧还原的电催化性能[J]. 化工学报, 2014, 65(10): 4015-4024.
|
|
Jin Y X , Shi M Q , Liu W M , et al . Pt/WC-CNTs electrocatalyst for oxygen reduction reaction[J]. CIESC Journal, 2014, 65(10): 4015-4024.
|
5 |
Zhang C H , Sha J W , Fei H L , et al . Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium[J]. ACS Nano, 2017, (11): 6930-6941.
|
6 |
Sui Z Y , Li X , Sun Z Y , et al . Nitrogen-doped and nanostructured carbons with high surface area for enhanced oxygen reduction reaction[J]. Carbon, 126: 111-118.
|
7 |
Dai L M , Xue Y H , Qu L T , et al . Metal-free catalysts for oxygen reduction reaction[J]. Chem. Rev., 2015, 115(11): 4823-4892.
|
8 |
Novoselov K S , Geim A K , Morozov S V , et al . Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
9 |
翁程杰, 史叶勋, 何大方, 等 . 水热法制备还原氧化石墨烯及其导电性调控[J]. 化工学报, 2018, 69(7): 3263-3269.
|
|
Weng C J , Shi Y X , He D F , et al . Hydrothermal synthesis of reduced graphene oxide with tunable conductivity[J]. CIESC Journal, 2018, 69(7): 3263-3269.
|
10 |
Bonaccorso F , Colombo L , Yu G H , et al . Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage[J]. Science, 2015, 347(6217): 1246501.
|
11 |
周宇, 王宇新 . 杂原子掺杂碳基氧还原反应电催化剂研究进展[J]. 化工学报, 2017, 68(2): 519-534.
|
|
Zhou Y , Wang Y X . Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon[J]. CIESC Journal, 2017, 68(2): 519-534.
|
12 |
Reda M , Hansen H A , Vegge T . DFT study of stabilization effects on N-doped graphene for ORR catalysis[J]. Catalysis Today, 2018, 312(15): 118-125.
|
13 |
Inagakia M , Toyoda M , Soneda B , et al . Nitrogen-doped carbon materials[J]. Carbon, 2018, 132: 104-140.
|
14 |
Yang G H , Li X , Wang Y Y , et al . Three-dimensional interconnected network few-layered MoS2/N, S co-doped graphene as anodes for enhanced reversible lithium and sodium storage[J]. Electrochimica Acta, 2019, 4686(18): 47-59.
|
15 |
Rahsepar M , Nobakht M R , Kim H , et al . Facile enhancement of the active catalytic sites of N-doped graphene as a high performance metal-free electrocatalyst for oxygen reduction reaction[J]. Applied Surface Science, 2018, 447(31): 182-190.
|
16 |
Gonen S , Elbaz L . Metal organic frameworks as catalysts for oxygen reduction[J]. Current Opinion in Electrochemistry, 2018, 9:179-188.
|
17 |
Liu A R , Ma M X , Zhang X Q , et al . A biomass derived nitrogen doped carbon fibers as efficient catalysts for the oxygen reduction reaction[J]. Journal of Electroanalytical Chemistry, 2018, 824(1): 60-66.
|
18 |
Travlou N A , Bandosz T J . N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon, 2017, 117: 228-239.
|
19 |
Chen Z L , Wu R B , Liu Y . Ultrafine Co nanoparticles encapsulated in carbon nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction[J]. Adv. Mater., 2018, 30(30): 1-10.
|
20 |
Jiang S , Ithisuphalap K , Zeng X R , et al . 3D porous cellular NiCoO2/graphene network as a durable bifunctional electrocatalyst for oxygen evolution and reduction reactions[J]. Journal of Power Sources, 2018, 399(30): 66-75.
|
21 |
Zhang D , Yao Y C , Liang F , et al . Controllable synthesis of carbon nanomaterials by direct current arc discharge from the inner wall of the chamber[J]. Carbon, 2019, 142: 278-284.
|
22 |
Kim S , Song Y J , Heller M . Seamless aqueous arc discharge process for producing graphitic carbon nanostructures[J]. Carbon, 2018, 120: 83-88.
|
23 |
Huang Z , Pan H Y , Yang W J , et al . In Situ Self-Template Synthesis of Fe−N-doped double-shelled hollow carbon microspheres for oxygen reduction reaction[J]. ACS Nano, 2018,12(1): 208-216.
|
24 |
Zhu Y W , Murali S , Stoller M D , et al . Carbon-based supercapacitors produced by activation of graphene[J]. Science, 2011, 332(6037): 1537-1541.
|
25 |
Ferrari A C , Meyer J C , Scardaci V , et al . Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.
|
26 |
Huang X H , Yin X L , Yu X Q , et al . Preparation of nitrogen-doped carbon materials based on polyaniline fiber and their oxygen reduction properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539(20): 163-170.
|
27 |
Kim H , Lee K , Woo S , et al . On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons[J]. Phys. Chem., 2011, 13(39): 17505-17510.
|
28 |
Wu, Z Y, Xu X X , Hu B C , et al . Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis[J]. Angew. Chem., 2015, 127: 8297-8301.
|
29 |
Díaz-Duran A K , Roncaroli F . MOF derived mesoporous nitrogen doped carbons with high activity towards oxygen reduction[J]. Electrochim. Acta, 2017, 251(10): 638-650.
|