1 |
Hao H H , Chen K L , Liu H , et al . A review of the positive electrode additives in lead-acid batteries [J] . International Journal of Electrochemical Science, 2018, 13(3): 2329-2340.
|
2 |
Singh A , Karandikar P B . A broad review on desulfation of lead-acid battery for electric hybrid vehicle [J]. Microsystem Technologies-Micro- and Nanosystems-Information Storage and Processing Systems, 2017, 23(6): 2263-2273.
|
3 |
Jiang Z Y , Wang T , Song L , et al . High over-potential nitrogen-doped activated carbon towards hydrogen evolution inhibition in sulfuric acid solution [J]. Journal of Materials Science-Materials in Electronics, 2019, 29(16): 14170-14179.
|
4 |
Wang F , Hu C , Lian J L , et al . Phosphorus-doped activated carbon as a promising additive for high performance lead carbon batteries [J]. RSC Advances, 2017, 7(7): 4174-4178.
|
5 |
Hu J C , Wu C B , Wang X L , et al . Additives of suppressing hydrogen evolution at carbon-containing negative plates of valve-regulated lead-acid batteries [J]. International Journal of Electrochemical Science, 2016, 11(2): 1416-1433.
|
6 |
Banerjee A , Ziv B , Shilina Y , et al . Single-wall carbon nanotube doping in lead-acid batteries: a new horizon [J]. ACS Applied Materials & Interfaces, 2017, 9(4): 3634-3643.
|
7 |
Saravanan M , Ganesan M , Ambalavanan S . An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery [J]. Journal of Power Sources, 2014, 251: 20-29.
|
8 |
Hu H Y , Xie N , Wang C , et al . Enhancing the performance of motive power lead-acid batteries by high surface area carbon black additives [J]. Applied Sciences-Basel, 2019, 9(1): 1-13.
|
9 |
Blecua M , Romero A F , Ocon P , et al . Improvement of the lead acid battery performance by the addition of graphitized carbon nanofibers together with a mix of organic expanders in the negative active material [J]. Journal of Energy Storage, 2019, 23: 106-115.
|
10 |
Naresh V , Bhattacharjee U , Martha S K . Boron doped graphene nanosheets as negative electrode additive for high-performance lead-acid batteries and ultracapacitors [J]. Journal of Alloys and Compounds, 2019, 797: 595-605.
|
11 |
Dada O J . Higher capacity utilization and rate performance of lead acid battery electrodes using graphene additives [J]. Journal of Energy Storage, 2019, 23: 579-589.
|
12 |
Xiang J Y , Ding P , Zhang H , et al . Beneficial effects of activated carbon additiveson the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation [J]. Journal of Power Sources, 2013, 241(6): 150-158.
|
13 |
Wang F , Hu C , Zhou M , et al . Research progresses of cathodic hydrogen evolution in advanced lead-acid batteries [J]. Science Bulletin, 2016, 61(6): 451-458.
|
14 |
Yin J , Lin N , Zhang W L , et al . Highly reversible lead-carbon battery anode with lead grafting on the carbon surface [J]. Journal of Energy Chemistry, 2018, 27(6): 1674-1683.
|
15 |
张荻, 张书倩, 张旺, 等 . 启迪于自然的遗态功能材料 [J]. 中国材料进展, 2018, 37(10): 765-775.
|
|
Zhang D , Zhang S Q , Zhang W , et al . Morphology genetic materials templated from nature species [J]. Materials China, 2018, 37(10): 765-775.
|
16 |
韦文慧, 朱宗强, 朱义年, 等 . 桉树遗态Fe2O3-Fe3O4/C复合材料的制备及其对水中锑(Ⅲ)的吸附研究 [J]. 水处理技术, 2013, 39(5): 69-72.
|
|
Wei W H , Zhu Z Q , Zhu Y N , et al . Adsorption of Sb(III) from aqueous solution by the porous biomorph-genetic composite of Fe2O3-Fe3O4/C prepared with eucalyptus wood template [J]. Technology of Water Treatment, 2013, 39(5): 69-72.
|
17 |
Fang J , Gu J J , Liu Q L , et al . Three-dimensional CdS/Au butterfly wing scales with hierarchical Rib structures for plasmon-enhanced photocatalytic hydrogen production [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 19649-19655.
|
18 |
Ji T , Chen L , Mu L W , et al . Green processing of plant biomass into mesoporous carbon as catalyst support [J]. Chemical Engineering Journal, 2016, 295(1): 301-398.
|
19 |
Babu B , Lashmi P G , Shaijumon M M . Li-ion capacitor based on activated rice husk derived porous carbon with improved electrochemical performance [J]. Electrochimica Acta, 2016, 211: 289-296.
|
20 |
Cao Y Y , Liu C B , Qian J C , et al . Novel 3D porous graphene decorated with Co3O4/CeO2 for high performance supercapacitor power cell [J]. Journal of Rare Earths, 2017, 35(10): 995-1001.
|
21 |
Du J , Ding Y , Guo L G , et al . Micro-tube biotemplate synthesis of Fe3O4/C composite as anode material for lithium-ion batteries [J]. Applied Surface Science, 2017, 425: 164-169.
|
22 |
Li J , Liu W L , Xiao D , et al . Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor [J]. Applied Surface Science, 2017, 416: 918-924.
|
23 |
龙柳锦 . 油茶果壳热解反应及其中孔活性炭的制备与表征 [D]. 南宁: 广西大学, 2012.
|
|
Long L J . Pyrolysis of camellia oleifera shell and the preparation and characterization of mesoporous activated carbon [D]. Nanning: Guangxi University, 2012.
|
24 |
Wang Q Q , Chang S S , Tan Y J , et al . Mesopore structure in camellia oleifera shell [J]. Protoplasma, 2019, 256(4): 1145-1151.
|
25 |
Lei Z H , Wang S D , Fu H C , et al . Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from camellia oleifera shell [J]. Bioresource Technology, 2019, 282: 228-235.
|
26 |
彭开元, 胡进波, 陈桂华, 等 . 油茶果壳化学成分与燃烧性能分析 [J]. 中南林业科技大学学报, 2016, 36(7): 123-128.
|
|
Peng K Y , Hu J B , Chen G H , et al . Research of chemical composition and combustion performance of camellia oleifera fruit shells [J]. Journal of Central South University of Forestry & Technology, 2016, 36(7): 123-128.
|
27 |
Zhou M , Zang D L , Zhai X L , et al . Preparation of biomorphic porous zinc oxide by wood template method [J]. Ceramics International, 2016, 42: 10704-10710.
|
28 |
胡信国, 王殿龙, 戴长松 . 铅碳电池 [M]. 北京: 化学工业出版社, 2015.
|
|
Hu X G , Wang D L , Dai C S . Lead Carbon Battery[M]. Beijing: Chemical Industry Press, 2015.
|
29 |
Jin H , Wu S C , Li T , et al . Synthesis of porous carbon nano-onions derived from rice husk for high-performance supercapacitors [J]. Applied Surface Science, 2019, 488: 593-599.
|
30 |
Zhai Y B , Xu B B , Zhu Y , et al . Nitrogen-doped porous carbon from camellia oleifera shells with enhanced electrochemical performance [J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 61: 449-456.
|
31 |
Ezeigwe E R , Tan M T T , Khiew P S , et al . One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors [J]. Ceramics International, 2015, 41(1): 715-724.
|
32 |
Beura R , Thangadurai P . Structural, optical and photocatalytic properties of graphene-ZnO nanocomposites for varied compositions [J]. Journal of Physics and Chemistry of Solids, 2017, 102: 168-177.
|
33 |
Chi H Z , Yin S , Cen D , et al . The capacitive behaviours of MnO2/carbon fiber composite electrode prepared in the presence of sodium tetraborate [J]. Journal of Alloys and Compounds, 2016, 648: 42-50.
|
34 |
Yin J , Lin N , Lin Z Q , et al . Optimized lead carbon composite for enhancing the performance of lead carbon battery under HRPSoC operation [J]. Journal of Electroanalytical Chemistry, 2018, 832: 266-274.
|
35 |
Zhang W L , Yin J , Lin Z Q , et al . Lead-carbon electrode designed for renewable energy storage with superior performance in partial state of charge operation [J]. Journal of Power Sources, 2017, 342: 183-191.
|
36 |
Hong B , Jiang L X , Xue H T , et al . Characterization of nano-lead-doped active carbon and its application in lead-acid battery [J]. Journal of Power Sources, 2014, 270: 332-341.
|
37 |
Gandhi K S . Modeling of effect of double-layer capacitance and failure of lead-acid batteries in HRPSoC application [J]. Journal of The Electrochemical Society, 2017, 164(11): E3092-E3101.
|
38 |
Naresh V , Martha S K . Carbon coated SnO2 as a negative electrode additive for high performance lead acid batteries and supercapacitors [J]. Journal of The Electrochemical Society, 2019, 166(4): A551-A558.
|