CIESC Journal ›› 2020, Vol. 71 ›› Issue (8): 3770-3779.DOI: 10.11949/0438-1157.20200126

• Energy and environmental engineering • Previous Articles     Next Articles

Numerical simulation of performance of thermally regenerative ammonia-based battery with copper foam electrode

Yongsheng ZHANG1,2(),Liang ZHANG1,2(),Jun LI1,2,Qian FU1,2,Xun ZHU1,2,Qiang LIAO1,2,Yu SHI1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing 400030, China
    2.Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Received:2020-02-10 Revised:2020-03-28 Online:2020-08-05 Published:2020-08-05
  • Contact: Liang ZHANG

采用泡沫铜电极的热再生氨电池性能数值模拟

张永胜1,2(),张亮1,2(),李俊1,2,付乾1,2,朱恂1,2,廖强1,2,石雨1,2   

  1. 1.低品位能源利用技术与系统教育部重点实验室,重庆 400030
    2.重庆大学工程热物理研究所,重庆 400030
  • 通讯作者: 张亮
  • 作者简介:张永胜(1994—),男,硕士研究生,zysvictor@hotmail.com
  • 基金资助:
    国家自然科学基金面上项目(51976018);国家自然科学基金青年基金项目(51606022);重庆市基础科学与前沿技术项目(cstc2017jcyjAX0203);重庆市留学人员创业创新支持计划创新资助重点项目(cx2017020);中央高校基本科研业务费专项资金(10611 2016CDJXY 145504);低品位能源利用技术及系统教育部重点实验室固定人员科研基金(LLEUTS-2018005)

Abstract:

A steady-state mathematical model that coupled the mass transfer and electrochemical reaction in a porous medium was proposed for a thermally regenerative ammonia-based battery (TRAB) with copper foam electrode. The battery performance and internal mass transfer characteristics of the porous electrode were obtained and the effects of electrolyte concentration and electrode porosity on battery performance were studied. The results showed that the anode ammonia and cathode copper ions were gradually consumed from the mainstream to the inside of the porous electrode, which led to a concentration gradient. With the increase of the reaction current, the concentration gradient increased obviously. In a certain range, with the increase of the concentration of anodic ammonia and cathode copper ions, the material transfer from the main flow area to the porous electrode improved. As the concentration of ammonium sulfate increases, the electrolyte conductivity increases, and the battery performance gradually improves, but the increase decreases gradually. In addition, the porous electrode porosity will also affect the battery performance. In this study, TRAB obtained the highest maximum power (15.3 mW) when the electrode porosity was 0.6.

Key words: thermally regenerative ammonia-based battery, porous foam electrode, numerical simulation, electrochemistry, mass transfer, maximal power, porosity

摘要:

以采用泡沫铜电极的热再生氨电池(thermally regenerative ammonia-based battery,TRAB)为研究对象,建立了多孔介质内物质传输与电化学反应耦合的稳态模型,计算获得了电池性能及多孔电极内物质传输特性,并研究了电解质浓度和电极孔隙率对电池性能的影响。研究结果表明,从主流区界面到多孔电极内部,阳极氨和阴极铜离子浓度逐渐降低,存在一定的浓度梯度,而且随着反应电流的增大,浓度梯度明显增大。在一定的范围内分别增大阳极氨浓度和阴极铜离子浓度,从主流区向多孔电极内物质传输增强,电池性能均能不断提升;随着硫酸铵浓度的增大,电解质电导率增大,电池性能逐渐提升,但增幅逐渐减小。此外,多孔电极孔隙率也会影响电池性能,本研究中TRAB在电极孔隙率为0.6时获得最高的最大功率(15.3 mW)。

关键词: 热再生氨电池, 多孔泡沫电极, 数值模拟, 电化学, 传质, 最大功率, 孔隙率

CLC Number: