CIESC Journal ›› 2020, Vol. 71 ›› Issue (12): 5802-5812.DOI: 10.11949/0438-1157.20200273
• Energy and environmental engineering • Previous Articles Next Articles
DENG Qiujin1,2(),SU Chengyuan1,2(),LU Xinya2,GUAN Xin2,QIN Ronghua2,DENG Yulian2,GAO Shu1,HUANG Zun2
Received:
2020-03-16
Revised:
2020-05-05
Online:
2020-12-05
Published:
2020-12-05
Contact:
SU Chengyuan
邓秋金1,2(),宿程远1,2(),陆欣雅2,关鑫2,覃容华2,邓钰莲2,高澍1,黄尊2
通讯作者:
宿程远
作者简介:
邓秋金(1995—),女,硕士研究生,基金资助:
CLC Number:
DENG Qiujin,SU Chengyuan,LU Xinya,GUAN Xin,QIN Ronghua,DENG Yulian,GAO Shu,HUANG Zun. Influence of nitrogen concentration on operation of a novel bio-electrochemical-granular sludge reactor[J]. CIESC Journal, 2020, 71(12): 5802-5812.
邓秋金,宿程远,陆欣雅,关鑫,覃容华,邓钰莲,高澍,黄尊. 氮浓度对新型生物电化学-颗粒污泥反应器运行的影响[J]. 化工学报, 2020, 71(12): 5802-5812.
Add to citation manager EndNote|Ris|BibTeX
18 | 史政. 多参数泵吸式检测仪的设计[J]. 电子测试, 2013, (7): 10-11. |
Shi Z. Design of multi-parameter pump-type detector [J]. Electronic Testing, 2013, (7): 10-11. | |
19 | Mu H, Chen Y G, Xiao N D, et al. Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion[J]. Bioresource Technology, 2011, 102: 10305-10311. |
20 | Guo X L, Gu J, Gao H, et al. Effects of Cu on metabolisms and enzyme activities of microbial communities in the process of composting[J]. Bioresource Technology, 2012, 108: 140-148. |
21 | Dong B, Xi, Z H, Sun J, et al. The inhibitory impacts of nano-graphene oxide on methane production from waste activated sludge in anaerobic digestion [J]. Science of the Total Environment, 2019, 646: 1376-1384. |
22 | 周俊, 周立祥, 黄焕忠. 污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J]. 环境科学, 2013, 34(7): 2752-2757. |
Zhou J, Zhou L X, Huang H Z. Optimization of extracellular polymeric substance extraction method and its role in the dewaterability of sludge [J]. Environmental Science, 2013, 34(7): 2752-2757. | |
23 | 徐铭含. 好氧颗粒污泥系统在变温过程中胞外聚合物变化规律[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
Xu M H. Changes of extracellular polymer in aerobic granular sludge system in the process of temperature change [D]. Harbin: Harbin Institute of Technology, 2019. | |
24 | Wang K, Mao H, Wang Z, et al. Succession of organics metabolic function of bacterial community in swine manure composting [J]. Journal of Hazardous Materials, 2018, 360: 471-480. |
25 | Ettwig K F, Alen T V, Pas-Schoonen K T V D, et al. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum [J]. Application Environment Microbiology, 2009, 75: 3656–3662. |
26 | Ettwig K F, Butler M K, Paslier D L, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria [J]. Nature, 2010, 464: 543-548. |
1 | Huang H, Cheng S, Li F, et al. Enhancement of the denitrification activity by exoelectrogens in single-chamber air cathode microbial fuel cells [J]. Chemosphere, 2019, 225: 548-556. |
2 | Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review [J]. Desalination, 2012, 285: 1-13. |
27 | Zhu Y, Zhu R, Xi Y, et al. Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light[J]. Chemical Engineering Journal, 2018, 346: 567-577. |
28 | 杨祖洁. 基于厌氧甲烷氧化的微生物燃料电池产电性能研究[D]. 福州: 福建农林大学, 2019. |
Yang Z J. Research on the electrical performance of microbial fuel cells based on anaerobic methane oxidation [D]. Fuzhou: Fujian Agriculture and Forestry University, 2019. | |
29 | Chen S M, Smith A L. Performance and microbial ecology of methane-driven microbial fuel cells at temperatures ranging from 25 to 5℃ [J]. Water Research, 2019, 166: 115036. |
30 | 杨金萍, 汪家权, 陈少华, 等. 双室微生物燃料电池处理硝酸盐废水[J]. 环境工程学报, 2013, 7(5): 1838-1842. |
Yang J P, Wang J Q, Chen S H, et al. Two-compartment microbial fuel cell treatment of nitrate wastewater [J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1838-1842. | |
31 | Liu R, Zheng X Y, Li M, et al. A three chamber bioelectrochemical system appropriate for in-situ remediation of nitrate-contaminated groundwater and its reaction mechanisms [J]. Water Research, 2019, 158: 410. |
32 | 毛春兰. 小麦秸秆与猪粪混合物料厌氧发酵特征及微生物调控机制研究[D]. 杨凌: 西北农林科技大学, 2018. |
Mao C L. Study on characteristics of anaerobic fermentation of wheat straw and pig manure mixture and microbiological regulation mechanism [D]. Yangling: North West Agriculture and Forestry University, 2018. | |
33 | 靖玉明, 张建, 张成禄, 等. 人工湿地中脱氢酶活性及其与污染物去除之间的相关性研究[J]. 环境工程, 2008, (1): 95-96. |
Jing Y M, Zhang J, Zhang C L, et al. Study on the correlation between dehydrogenase activity and pollutant removal in constructed wetland [J]. Environmental Engineering, 2008, (1): 95-96. | |
34 | Miao H, Lu M, Zhao M, et al. Enhancement of Taihu blue algae anaerobic digestion efficiency by natural storage[J]. Bioresource Technology, 2013, 149: 359-366. |
35 | 颜炳坤. 联合葡萄糖激酶与乙酸激酶催化的ATP再生系统酶法合成葡萄糖-6-磷酸[D]. 上海: 华东理工大学, 2014. |
Yan B K. Synthesis of glucose-6-phosphoric acid by ATP regeneration system enzymatic method catalyzed by gluconase and acetate kinase [D]. Shanghai: East China University of Science and Technology, 2014. | |
36 | 李雪, 蔡丹, 沈月, 等. 微生物来源蛋白酶的研究进展[J]. 食品科技, 2019, 44(1): 37-41. |
Li X, Cai D, Shen Y, et al. Research progress of microbial protease [J]. Food Science and Technology, 2019, 44(1): 37-41. | |
37 | Kong Z, Li L, Li Y, et al. Characterization and variation of microbial community structure during the anaerobic treatment of N, N-dimethylformamide-containing wastewater by UASB with artificially mixed consortium [J]. Bioresource Technology. 2018, 268: 434-444. |
38 | 王宇佳. 亚硝化过程控制与厌氧氨氧化工艺运行及其微生物特性[D]. 沈阳: 东北大学, 2017. |
Wang Y J. Nitritation process control and Anammox process performance and their microbial characteristics[D]. Shenyang: Northeastern University, 2017. | |
39 | 廖润华. 胁迫条件下EGSB反应器处理高硝态氮废水及其微生物群落与功能研究[D]. 南京: 南京大学, 2014. |
Liao R H. Research on microbial communities, function and performances for high nitrate nitrogen wastewater treatment in an EGSB reactor under stress conditions [D]. Nanjing: Nanjing University, 2014. | |
40 | 汪瑶琪, 张敏, 姜滢, 等. 厌氧氨氧化启动过程及微生物群落结构特征[J]. 环境科学, 2017, 38(12): 5184-5191. |
Wang Y Q, Zhang M, Jiang Y, et al. Anammox initiation process and microbial community structure characteristics [J]. Environmental Science, 2017, 38(12): 5184-5191. | |
41 | Sun H, Xu S, Wu S, et al. Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands[J]. Journal of Environment Management, 2019, 246: 157-163. |
42 | Yang N, Zhan G, Li D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. |
43 | Huang H B, Cheng S A, Yang J W, et al. Effect of nitrate on electricity generation in single-chamber air cathode microbial fuel cells [J]. Chemical Engineering Journal, 2017, 337: 661-670. |
3 | Anthony J S, Kathryn A W, Dale A C B, et al. Microbial fuel cells: an overview of current technology [J]. Renewable and Sustainable Energy Reviews, 2019, 101: 60-81. |
4 | 杨政伟, 顾莹莹, 赵朝成, 等. 土壤微生物燃料电池的研究进展及展望[J]. 化工学报, 2017, 68(11): 3995-4004. |
Yang Z W, Gu Y Y, Zhao C C, et al. Research progress and prospect of soil microbial fuel cells [J]. CIESC Journal, 2017, 68(11): 3995-4004. | |
5 | Jin X J, Guo F, Ma W Q, et al. Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells [J]. Chemical Engineering Journal, 2019, 370: 527-535. |
6 | Cheng K, Hu J P, Hou H J, et al. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment [J]. Bioresource Technology, 2017, 229: 126-133. |
7 | 江丽珍, 刘江, 向兴, 等. 氮依赖型甲烷厌氧氧化菌的整合[J]. 微生物学报, 2018, 58(8): 1407-1419. |
Jiang L Z, Liu J, Xiang X, et al. Integrated analysis of nitrite-dependent anaerobic methane oxidation bacteria [J]. Acta Microbiologica Sinica, 2018, 58(8): 1407-1419. | |
8 | Su J, Hu C, Yan X, et al. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice [J]. Nature, 2015, 523: 602-606. |
9 | 何崭飞. 亚硝酸盐型甲烷厌氧氧化细菌培养条件优化及其生态功能[D]. 杭州: 浙江大学, 2016. |
He Z F. Optimization of culture conditions and ecological functions of anaerobic bacteria with nitrite type methane [D]. Hangzhou: Zhejiang University, 2016. | |
10 | Hu B L, Shen L D, Lian X, et al. Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands[J]. Proceedings of the National Academy of Sciences, 2014, 111: 4495-4500. |
11 | Kampman C, Hendrickx T L G, Luesken F A, et al. Enrichment of denitrifying methanotrophic bacteria for application after direct low-temperature anaerobic sewage treatment[J]. Journal of Hazardous Materials, 2012, 227/228: 164-171. |
12 | Hatamoto M, Sato T, Nemoto S. Cultivation of denitrifying anaerobic methane-oxidizing microorganisms in a continuous-flow sponge bioreactor [J]. Applied Microbiology and Biotechnology, 2017, 101: 5881-5888. |
13 | Ding J, Lu Y Z, Fu L, et al. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell [J]. Water Research, 2017, 110: 112-119. |
14 | Fu L, Zhang F, Bai Y N, et al. Mass transfer affects reactor performance, microbial morphology, and community succession in the methane-dependent denitrification and anaerobic ammonium oxidation co-culture [J]. Science of the Total Environment, 2019, 651: 291-297. |
15 | 尤世界. 微生物燃料电池处理有机废水过程中的产电特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. |
You S J. Research on power generation characteristics of microbial fuel cell in treating organic wastewater [D]. Harbin: Harbin Institute of Technology, 2008. | |
16 | 岳学海, 孔维芳, 王许云, 等. 厌氧流化床微生物燃料电池空气阴极研究[J]. 化工学报, 2013, 64(1): 352-356. |
Yue X H, Kong W F, Wang X Y, et al. Research on air-cathode of anaerobic fluidized bed microbial fuel cell [J]. CIESC Journal, 2013, 64(1): 352-356. | |
17 | Cai C, Hu S, Guo J, et al. Nitrate reduction by denitrifying anaerobic methane oxidizing microorganisms can reach a practically useful rate [J]. Water Research, 2015, 87: 211-217. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[9] | Lanhe ZHANG, Qingyi LAI, Tiezheng WANG, Xiaozhuo GUAN, Mingshuang ZHANG, Xin CHENG, Xiaohui XU, Yanping JIA. Effect of H2O2 on nitrogen removal and sludge properties in SBR [J]. CIESC Journal, 2023, 74(5): 2186-2196. |
[10] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Jianhua ZHANG, Mengmeng CHEN, Yawen SUN, Yongzhen PENG. Efficient nitrogen and phosphorus removal from domestic wastewater via simultaneous partial nitritation and phosphorus removal combined Anammox [J]. CIESC Journal, 2023, 74(5): 2147-2156. |
[13] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[14] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[15] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||