CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 5237-5245.DOI: 10.11949/0438-1157.20200328
• Process system engineering • Previous Articles Next Articles
Zhongjian SUN(),Bo YANG,Chu QI,Hongguang LI()
Received:
2020-03-30
Revised:
2020-06-10
Online:
2020-11-05
Published:
2020-11-05
Contact:
Hongguang LI
通讯作者:
李宏光
作者简介:
孙中建(1996—),男,硕士研究生,CLC Number:
Zhongjian SUN,Bo YANG,Chu QI,Hongguang LI. An extended logical analysis of data approach to fault detections of industrial hybrid systems[J]. CIESC Journal, 2020, 71(11): 5237-5245.
孙中建,杨博,齐楚,李宏光. 面向工业混杂系统故障检测的扩展数据逻辑分析方法[J]. 化工学报, 2020, 71(11): 5237-5245.
Add to citation manager EndNote|Ris|BibTeX
Step | Algorithm |
---|---|
1 | Input: |
2 | for d=1,2,…,D |
3 | if d<D, Cd=0, end if |
4 | for T through Cd-1 |
5 | p= maximum index of T; |
6 | for s=p+1,p+2,…,n |
7 | for lnew through {ls, ls′} |
8 | T′=T||lnew |
9 | for i=1,2,…,d |
10 | |
11 | if |
12 | end for |
13 | if |
14 | if |
15 | P=P∪{T′}; |
16 | else if d<D |
17 | Cd=Cd∪{T′}; |
18 | end if |
19 | end if |
20 | end for |
21 | end for |
22 | end for |
23 | end for |
24 | Output: P |
Table 1 Logical analysis of data algorithms
Step | Algorithm |
---|---|
1 | Input: |
2 | for d=1,2,…,D |
3 | if d<D, Cd=0, end if |
4 | for T through Cd-1 |
5 | p= maximum index of T; |
6 | for s=p+1,p+2,…,n |
7 | for lnew through {ls, ls′} |
8 | T′=T||lnew |
9 | for i=1,2,…,d |
10 | |
11 | if |
12 | end for |
13 | if |
14 | if |
15 | P=P∪{T′}; |
16 | else if d<D |
17 | Cd=Cd∪{T′}; |
18 | end if |
19 | end if |
20 | end for |
21 | end for |
22 | end for |
23 | end for |
24 | Output: P |
变量 | 描述 | 变量 | 描述 |
---|---|---|---|
F1 | 汽包补水流量 | F3 | 汽包排污流量 |
L1 | 汽包液位 | DV | 补水流量阀 |
P1 | 汽包压力 | T2 | 汽包出口蒸汽温度 |
T1 | 锅炉水补水温度 | T3 | 去汽化炉循环水温度 |
D1 | 汽包循环水密度 | F4 | 去汽化炉循环水流量 |
F2 | 汽包出口蒸汽流量 | F5 | 去汽化炉顶部盘管循环水流量 |
Table 2 Correlated variables and its description
变量 | 描述 | 变量 | 描述 |
---|---|---|---|
F1 | 汽包补水流量 | F3 | 汽包排污流量 |
L1 | 汽包液位 | DV | 补水流量阀 |
P1 | 汽包压力 | T2 | 汽包出口蒸汽温度 |
T1 | 锅炉水补水温度 | T3 | 去汽化炉循环水温度 |
D1 | 汽包循环水密度 | F4 | 去汽化炉循环水流量 |
F2 | 汽包出口蒸汽流量 | F5 | 去汽化炉顶部盘管循环水流量 |
补水流量F1 | 汽包液位L1 | 汽包压力P1 | … | 补水温度T1 | 循环水流量F4 | 补水流量阀DV | 状态 |
---|---|---|---|---|---|---|---|
9.80 | 71.09 | 4.19 | … | 176.82 | 20.19 | 1 | 正常 |
9.80 | 71.10 | 4.19 | … | 176.81 | 20.20 | 1 | 正常 |
9.78 | 71.16 | 4.19 | … | 176.80 | 20.20 | 1 | 故障 |
9.75 | 71.18 | 4.19 | … | 176.79 | 20.18 | 1 | 故障 |
… | … | … | … | … | … | … | … |
0 | 71.04 | 4.22 | … | 171.39 | 20.23 | 0 | 正常 |
0 | 71.04 | 4.22 | … | 171.39 | 20.21 | 0 | 正常 |
… | … | … | … | … | … | … | … |
8.62 | 62.94 | 4.17 | … | 178.29 | 20.12 | 1 | 故障 |
8.70 | 62.95 | 4.17 | … | 178.29 | 20.16 | 1 | 故障 |
Table 3 Correlated variable data
补水流量F1 | 汽包液位L1 | 汽包压力P1 | … | 补水温度T1 | 循环水流量F4 | 补水流量阀DV | 状态 |
---|---|---|---|---|---|---|---|
9.80 | 71.09 | 4.19 | … | 176.82 | 20.19 | 1 | 正常 |
9.80 | 71.10 | 4.19 | … | 176.81 | 20.20 | 1 | 正常 |
9.78 | 71.16 | 4.19 | … | 176.80 | 20.20 | 1 | 故障 |
9.75 | 71.18 | 4.19 | … | 176.79 | 20.18 | 1 | 故障 |
… | … | … | … | … | … | … | … |
0 | 71.04 | 4.22 | … | 171.39 | 20.23 | 0 | 正常 |
0 | 71.04 | 4.22 | … | 171.39 | 20.21 | 0 | 正常 |
… | … | … | … | … | … | … | … |
8.62 | 62.94 | 4.17 | … | 178.29 | 20.12 | 1 | 故障 |
8.70 | 62.95 | 4.17 | … | 178.29 | 20.16 | 1 | 故障 |
状态 | 训练集 | 测试集 | 总计 |
---|---|---|---|
正常 | 7633 | 1837 | 9470 |
故障 | 367 | 163 | 530 |
总计 | 8000 | 2000 | 10000 |
Table 4 Number of training and testing datasets
状态 | 训练集 | 测试集 | 总计 |
---|---|---|---|
正常 | 7633 | 1837 | 9470 |
故障 | 367 | 163 | 530 |
总计 | 8000 | 2000 | 10000 |
基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|
P(1) | DV=1 | 1.000 |
P(2) | k=1 | 0.790 |
P(3) | L1>71.105 | 0.757 |
P(4) | L1′>0.039 | 0.995 |
P(5) | F1>3.423 | 0.847 |
P(6) | F1′≤0.027 | 0.251 |
P(7) | D1′≤0.0093 | 0.362 |
P(8) | F1>3.1788 | 0.981 |
P(9) | L1′>0.0987 | 0.460 |
P(10) | F1′>1.5455 | 0.038 |
P(11) | L1≤63.005 | 0.243 |
P(12) | L1′>0.0701 | 0.790 |
P(13) | T2′>81.987 | 0.240 |
P(14) | F4≤20.225 | 0.619 |
P(15) | F1>6.2149 | 0.594 |
P(16) | L1′>0.1093 | 0.305 |
P(17) | T2′>99.6787 | 0.046 |
Table 5 Coverages of events
基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|
P(1) | DV=1 | 1.000 |
P(2) | k=1 | 0.790 |
P(3) | L1>71.105 | 0.757 |
P(4) | L1′>0.039 | 0.995 |
P(5) | F1>3.423 | 0.847 |
P(6) | F1′≤0.027 | 0.251 |
P(7) | D1′≤0.0093 | 0.362 |
P(8) | F1>3.1788 | 0.981 |
P(9) | L1′>0.0987 | 0.460 |
P(10) | F1′>1.5455 | 0.038 |
P(11) | L1≤63.005 | 0.243 |
P(12) | L1′>0.0701 | 0.790 |
P(13) | T2′>81.987 | 0.240 |
P(14) | F4≤20.225 | 0.619 |
P(15) | F1>6.2149 | 0.594 |
P(16) | L1′>0.1093 | 0.305 |
P(17) | T2′>99.6787 | 0.046 |
规则 | 基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|---|
R(1) | P(1)∩P(2)∩P(3)∩P(4) | DV=1, k=1, L1>71.105, L1′>0.039 | 0.752 |
R(2) | P(3)∩P(5)∩P(6)∩P(7) | L1>71.105, F1>3.423, F1′≤0.027, D1′≤0.0093 | 0.074 |
R(3) | P(1)∩P(2)∩P(3)∩P(8) | DV=1, k=1, L1>71.105, F1>3.1788 | 0.738 |
R(4) | P(1)∩P(2)∩P(9)∩P(10) | DV=1, k=1, L1′>0.0987, F1′>1.5455 | 0.019 |
R(5) | P(11)∩P(12) | L1≤63.005, L1′>0.0701 | 0.237 |
R(6) | P(13)∩P(14) | T2′>81.987, F4≤20.225 | 0.065 |
R(7) | P(11)∩P(15) | L1≤63.005, F1>6.2149 | 0.237 |
R(8) | P(11)∩0P(16)∩P(17) | L1≤63.005, L1′>0.1093, T2′>99.6787 | 0.022 |
Table 6 Coverages of rules
规则 | 基本事件 | 基本事件含义 | 覆盖率 |
---|---|---|---|
R(1) | P(1)∩P(2)∩P(3)∩P(4) | DV=1, k=1, L1>71.105, L1′>0.039 | 0.752 |
R(2) | P(3)∩P(5)∩P(6)∩P(7) | L1>71.105, F1>3.423, F1′≤0.027, D1′≤0.0093 | 0.074 |
R(3) | P(1)∩P(2)∩P(3)∩P(8) | DV=1, k=1, L1>71.105, F1>3.1788 | 0.738 |
R(4) | P(1)∩P(2)∩P(9)∩P(10) | DV=1, k=1, L1′>0.0987, F1′>1.5455 | 0.019 |
R(5) | P(11)∩P(12) | L1≤63.005, L1′>0.0701 | 0.237 |
R(6) | P(13)∩P(14) | T2′>81.987, F4≤20.225 | 0.065 |
R(7) | P(11)∩P(15) | L1≤63.005, F1>6.2149 | 0.237 |
R(8) | P(11)∩0P(16)∩P(17) | L1≤63.005, L1′>0.1093, T2′>99.6787 | 0.022 |
规则 | 模式 | 故障 | ||
---|---|---|---|---|
R1 | 0.039 | M1 | 0.039 | P=0.053 |
R2 | 0.004 | |||
R3 | 0.037 | M2 | 0.039 | |
R4 | 0.002 | |||
R5 | 0.011 | M3 | 0.014 | |
R6 | 0.002 | |||
R7 | 0.014 | M4 | 0.014 | |
R8 | 0.001 |
Table 7 Fault Probabilities
规则 | 模式 | 故障 | ||
---|---|---|---|---|
R1 | 0.039 | M1 | 0.039 | P=0.053 |
R2 | 0.004 | |||
R3 | 0.037 | M2 | 0.039 | |
R4 | 0.002 | |||
R5 | 0.011 | M3 | 0.014 | |
R6 | 0.002 | |||
R7 | 0.014 | M4 | 0.014 | |
R8 | 0.001 |
检测模式 | 准确率/% |
---|---|
M1 | 99.9 |
M2 | 100 |
M3 | 99.4 |
M4 | 99.7 |
Table 8 Accuracies of patterns
检测模式 | 准确率/% |
---|---|
M1 | 99.9 |
M2 | 100 |
M3 | 99.4 |
M4 | 99.7 |
方法 | 平均规则数目 | 准确率/% |
---|---|---|
LAD | 12 | 97.3 |
ELAD | 4 | 99.8 |
kNN | - | 86.8 |
SVM | - | 96.4 |
Table 9 Performance comparisons with traditional classifiers
方法 | 平均规则数目 | 准确率/% |
---|---|---|
LAD | 12 | 97.3 |
ELAD | 4 | 99.8 |
kNN | - | 86.8 |
SVM | - | 96.4 |
1 | Zhou G, Biswas G, Feng W. A comprehensive diagnosis of hybrid systems for discrete and parametric faults using hybrid I/O automata[J]. Ifac Papersonline, 2015, 48(21): 143-149. |
2 | Barton P I, Lee C K. Modeling, simulation, sensitivity analysis, and optimization of hybrid systems[J]. ACM Transactions on Modeling and Computer Simulation, 2002, 12(4): 256-289. |
3 | Maurya M R, Rengaswamy R, Venkatasubramanian V. A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis[J]. Chemical Engineering Research & Design, 2007, 85(10): 1407-1422. |
4 | 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9, 16. |
Li H, Xiao D Y. Survey on data driven fault diagnosis methods[J]. Journal of Control and Decision, 2011, 26(1): 1-9, 16. | |
5 | Ming L, Zhao J. Review on chemical process fault detection and diagnosis[C]//6th International Symposium on Advanced Control of Industrial Processes, New Jersey: IEEE, 2017: 457-462. |
6 | Bezerra C G, Costa B S J, Guedes L A, et al. An evolving approach to unsupervised and Real-Time fault detection in industrial processes[J]. Expert Systems with Applications, 2016, 63: 134-144. |
7 | Sadeghi R, Hamidzadeh J. Automatic support vector data description[J]. Soft Computing, 2018, 22(1): 147-158. |
8 | Yu J, Yan X. Whole process monitoring based on unstable neuron output information in hidden layers of deep belief network[J]. IEEE Transactions on Cybernetics, 2019, PP(99): 1-10. |
9 | Heracleous C, Panayiotou C G, Polycarpou M M. Fault diagnosis of uncertain hybrid systems[J]. IFAC-PapersOnLine, 2018, 51(24): 123-130. |
10 | Lebbal M E H, Chafouk H, Hoblos G, et al. Faults detection and isolation for non linear hybrid systems[J]. IFAC Proceedings Volumes, 2006, 39(13): 986-991. |
11 | Krell M M, Straube S. Backtransformation: a new representation of data processing chains with a scalar decision function[J]. Advances in Data Analysis and Classification, 2017, 11(2): 415-439. |
12 | Ragab A, El-Koujok M, Amazouz M, et al. Fault detection and diagnosis in the Tennessee Eastman process using interpretable knowledge discovery[C]// 2017 Annual Reliability and Maintainability Symposium, New Jersey: IEEE, 2017: 1-7. |
13 | Lopez-Soto D, Yacout S, Angel-Bello F. Root cause analysis of familiarity biases in classification of inventory items based on logical patterns recognition[J]. Computers and Industrial Engineering, 2016, 93(C): 121-130. |
14 | Kogan A, Lejeune M A. Combinatorial methods for constructing credit risk ratings[M]// Lee C F, Lee J. Handbook of Financial Econometrics and Statistics. New York: Springer, 2015: 439-483. |
15 | Kronek L P, Reddy A A. Logical analysis of survival data: prognostic survival models by detecting high-degree interactions in right-censored data[J]. Bioinformatics, 2008, 24(16): i248-i253. |
16 | Mortada M A, Yacout S, Lakis A. Fault diagnosis in power transformers using multi-class logical analysis of data[J]. Journal of Intelligent Manufacturing, 2014, 25(6): 1429-1439. |
17 | Shaban Y, Yacout S, Balazinski M, et al. Cutting tool wear detection using multiclass logical analysis of data[J]. Machining Science and Technology, 2017, 21(4): 526-541. |
18 | Jocelyn S, Chinniah Y, Ouali M S, et al. Application of logical analysis of data to machinery-related accident prevention based on scarce data[J]. Reliability Engineering and System Safety, 2017, 159: 223-236. |
19 | Ragab A, El-Koujok M, Poulin B, et al. Fault diagnosis in industrial chemical processes using interpretable patterns based on Logical Analysis of Data[J]. Expert Systems with Applications, 2017, 95: 368-383. |
20 | Jie Y, Yan X. Mutual information-dynamic stacked sparse autoencoders for fault detection[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21614-21624. |
21 | Boros E, Crama Y, Hammer P L, et al. Logical analysis of data: classification with justification[J]. Annals of Operations Research, 2011, 188(1): 33-61. |
22 | Boros E, Hammer P L, Ibaraki T, et al. Logical analysis of numerical data[J]. Mathematical Programming, 1997, 79(1): 163-190. |
23 | Han J, Kim N, Yum B J, et al. Pattern selection approaches for the logical analysis of data considering the outliers and the coverage of a pattern[J]. Expert Systems with Applications, 2011, 38(11): 13857-13862. |
24 | Chikalov I, Lozin V, Lozina I, et al. Logical analysis of data: Theory, methodology and applications[M]//Three Approaches to Data Analysis. Springer Berlin Heidelberg, 2013: 147-192. |
25 | Crama Y, Hammer P L, Ibaraki T. Cause-effect relationships and partially defined Boolean functions[J]. Annals of Operations Research, 1988, 16(1): 299-325. |
26 | Crama Y, Hammer P L. Boolean Functions: Theory, Algorithms, and Applications[M].New York: Cambridge University Press, 2011: 511-526. |
27 | Boros E, Hammer P L, Ibaraki T, et al. An implementation of logical analysis of data[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2): 292-306. |
28 | Bonates T O, Hammer P L, Kogan A. Maximum patterns in datasets[J]. Discrete Applied Mathematics, 2008, 156(6): 846-861. |
29 | Velliangiri S, Alagumuthukrishnan S. A review of dimensionality reduction techniques for efficient computation[J]. Procedia Computer Science, 2019, 165: 104-111. |
30 | Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis[J]. Materials and Design, 2016, 89: 1335-1342. |
31 | Li G D, Yamaguchi D, Nagai M. A grey-based decision-making approach to the supplier selection problem[J]. Mathematical & Computer Modelling, 2007, 46(3/4): 573-581. |
32 | Qiu B, Wang F, Li Y, et al. Research on method of simulation model validation based on improved grey relational analysis[J]. Physics Procedia, 2012, 25: 1118-1125. |
33 | Chan J W K, Tong T K L. Multi-criteria material selections and end-of-life product strategy: grey relational analysis approach[J]. Materials and Design, 2007, 28(5): 1539-1546. |
34 | 李海林, 郭崇慧. 基于形态特征的时间序列符号聚合近似方法[J]. 模式识别与人工智能, 2011, 24(5): 665-672. |
Li H L, Guo C H. Symbolic aggregate approximation based on shape features[J]. Pattern Recognition and Artificial Intelligence, 2011, 24(5): 665-672. | |
35 | Chen N, Xue Y, Ding J, et al. Symbolizing for wind speed time series[J]. Automation of Electric Power Systems, 2017, 41(11): 33-38. |
36 | Lu B, Castillo I, Chiang L, et al. Industrial PLS model variable selection using moving window variable importance in projection[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 135: 90-109. |
37 | Tang H, Liu S. Basic theory of fuzzy Bayesian networks and its application in machinery fault diagnosis[C]//Fourth International Conference on Fuzzy Systems and Knowledge Discovery, New Jersey: IEEE Computer Society, 2007: 132-137. |
38 | Chelson P O. Reliability computation using fault tree analysis[R]. Jet Propulsion Laboratory 32-1542, 1971. |
39 | Straube S, Krell M M. How to evaluate an agent's behavior to infrequent events?-Reliable performance estimation insensitive to class distribution[J]. Frontiers in Computational Neuroscience, 2014, 8: 43-43. |
[1] | Yihao ZHANG, Zhenlei WANG. Fault detection using grouped support vector data description based on maximum information coefficient [J]. CIESC Journal, 2023, 74(9): 3865-3878. |
[2] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[3] | Bing SONG, Chengfeng ZHENG, Hongbo SHI, Yang TAO, Shuai TAN. Research on quality-related fault detection method based on VAE-OCCA [J]. CIESC Journal, 2023, 74(4): 1630-1638. |
[4] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[5] | Jiawang YONG, Qianqian ZHAO, Nenglian FENG. Fault diagnosis of proton exchange membrane fuel cell based on nonlinear dynamic model [J]. CIESC Journal, 2022, 73(9): 3983-3993. |
[6] | Jinyu GUO, Zhe WANG, Yuan LI. Fault detection method based on kernel entropy independent component analysis [J]. CIESC Journal, 2022, 73(8): 3647-3658. |
[7] | Kun WANG, Hongbo SHI, Shuai TAN, Bing SONG, Yang TAO. Local time difference constrained neighborhood preserving embedding algorithm for fault detection [J]. CIESC Journal, 2022, 73(7): 3109-3119. |
[8] | Jinyu GUO, Wentao LI, Yuan LI. Application of adaptive algorithm of online reduced KECA in fault detection [J]. CIESC Journal, 2021, 72(8): 4227-4238. |
[9] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[10] | Xiaohui WANG, Yanjiang WANG, Xiaogang DENG, Zheng ZHANG. Industrial process fault detection using weighted deep support vector data description [J]. CIESC Journal, 2021, 72(11): 5707-5716. |
[11] | Mingyue DENG, Jianchang LIU, Peng XU, Shubin TAN, Liangliang SHANG. New fault detection and diagnosis strategy for nonlinear industrial process based on KECA [J]. CIESC Journal, 2020, 71(5): 2151-2163. |
[12] | Yu HAN, Junfang LI, Qiang GAO, Yu TIAN, Guogang YU. Fault detection based on fault discrimination enhanced kernel entropy component analysis algorithm [J]. CIESC Journal, 2020, 71(3): 1254-1263. |
[13] | XU Jing,WANG Zhenlei,WANG Xin. Fault detection for chemical process based on nonlinear dynamic global-local preserving projections [J]. CIESC Journal, 2020, 71(12): 5655-5663. |
[14] | Wei CHAI, Longhang GUO, Binbin CHI. Interval model for predicting effluent quality variables of wastewater treatment plants [J]. CIESC Journal, 2019, 70(9): 3449-3457. |
[15] | Lei YU, Xiaogang DENG, Yuping CAO, Kaiqi LU. Fault detection method of unequal-length batch process based on VGDTW-MCVA [J]. CIESC Journal, 2019, 70(9): 3441-3448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||