CIESC Journal ›› 2020, Vol. 71 ›› Issue (9): 4046-4057.DOI: 10.11949/0438-1157.20200472
• Reviews and monographs • Previous Articles Next Articles
Meng JIA1(),Jiabin ZHANG1,Yaqing FENG1,2,Bao ZHANG1()
Received:
2020-05-05
Revised:
2020-07-13
Online:
2020-09-05
Published:
2020-09-05
Contact:
Bao ZHANG
通讯作者:
张宝
作者简介:
贾勐(1997—),男,硕士研究生,基金资助:
CLC Number:
Meng JIA, Jiabin ZHANG, Yaqing FENG, Bao ZHANG. Application of metal-porphyrin-based frameworks in photocatalysis[J]. CIESC Journal, 2020, 71(9): 4046-4057.
贾勐, 张嘉宾, 冯亚青, 张宝. 金属-卟啉框架材料在光催化领域的应用[J]. 化工学报, 2020, 71(9): 4046-4057.
Add to citation manager EndNote|Ris|BibTeX
1 | Demessence A, Long J R. Selective gas adsorption in the flexible metal-organic frameworks Cu(BDTri)L (L=DMF, DEF)[J]. Chemistry, 2010, 16(20): 5902-5908. |
2 | Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1477-1504. |
3 | Murray L J, Dinca M, Long J R. Hydrogen storage in metal-organic frameworks[J]. Chem. Soc. Rev., 2009, 38(5): 1294-1314. |
4 | Lismont M, Dreesen L, Wuttke S. Metal-organic framework nanoparticles in photodynamic therapy: current status and perspectives[J]. Advanced Functional Materials, 2017, 27(14): 1606314-1606329. |
5 | Wu C D, Hu A G, Zhang L, et al. A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis[J]. J. Am. Chem. Soc., 2005, 127(25): 8940-8941. |
6 | Dong B X, Qian S L, Bu F Y, et al. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework[J]. ACS Applied Energy Materials, 2018, 1(9): 4662-4669. |
7 | Wang L, Jin P, Duan S, et al. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction[J]. Science Bulletin, 2019, 64(13): 926-933. |
8 | Deria P, Gomez D A, Hod I, et al. Framework-topology-dependent catalytic activity of zirconium-based (porphinato) zinc(Ⅱ) MOFs[J]. Journal of the American Chemical Society, 2016, 138(43): 14449-14457. |
9 | Liang J, Xie Y Q, Wu Q, et al. Zinc porphyrin/imidazolium integrated multivariate zirconium metal–organic frameworks for transformation of CO2 into cyclic carbonates[J]. Inorganic Chemistry, 2018, 57(5): 2584-2593. |
10 | Morris W, Volosskiy B, Demir S, et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks[J]. Inorganic Chemistry, 2012, 51(12): 6443-6445. |
11 | Sharma N, Dhankhar S S, Kumar S, et al. Rational design of a 3D MnII‐metal-organic framework based on a nonmetallated porphyrin linker for selective capture of CO2 and one-pot synthesis of styrene carbonates[J]. Chemistry-A European Journal, 2018, 24(62): 16662-16669. |
12 | Dhakshinamoorthy A, Li Z, Garcia H. Catalysis and photocatalysis by metal organic frameworks[J]. Chemical Society Reviews, 2018, 47(22): 8134-8172. |
13 | Deng X, Li Z, García H. Visible light induced organic transformations using metal-organic-frameworks (MOFs)[J]. Chemistry-A European Journal, 2017, 23(47): 11189-11209. |
14 | Chen Y, Wang D, Deng X, et al. Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction[J]. Catalysis Science & Technology, 2017, 7(21): 4893-4904. |
15 | 安阳. 系列金属有机骨架材料的设计、制备及光催化分解水性能的研究[D]. 济南: 山东大学, 2019. |
An Y. Study on structural design, preparation and photocatalytic water splitting property of series of metal-organic framework materials[D]. Jinan: Shandong University, 2019. | |
16 | Jiang H L, Makal T A, Zhou H C. Interpenetration control in metal-organic frameworks for functional applications [J]. Coordination Chemistry Reviews, 2013, 257(15/16): 2232-2249. |
17 | 袁履冰, 张田林. 卟啉化合物的共振能[J]. 有机化学, 1986, 4: 289-290. |
Yuan L B, Zhang T L. Resonance energy of porphyrins[J]. Chinese Journal of Organic Chemistry, 1986, 4: 289-290. | |
18 | Zhang L, Yuan S, Feng L, et al. Pore‐environment engineering with multiple metal sites in rare-earth porphyrinic metal-organic frameworks[J]. Angewandte Chemie International Edition, 2018, 57(18): 5095-5099. |
19 | 刘兴燕, 徐永港, 熊成, 等. 卟啉金属有机骨架材料在光催化领域的研究进展[J]. 应用化工, 2019, 48(2): 482-485. |
Liu X Y, Xu Y C, Xiong C, et al. Recent progress on the photocatalysis of porphyrin-based metal-organic frameworks[J]. Applied Chemical Industry, 2019, 48(2): 482-485. | |
20 | Gouterman M. Spectra of porphyrins[J]. Journal of Molecular Spectroscopy, 1961, 6: 138-163. |
21 | Hamad S, Hernandez N C, Aziz A, et al. Electronic structure of porphyrin-based metal-organic frameworks and their suitability for solar fuel production photocatalysis[J]. Journal of Materials Chemistry A, 2015, 3(46): 23458-23465. |
22 | Rowsell J L C, Yaghi O M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks[J]. Journal of the American Chemical Society, 2006, 128(4): 1304-1315. |
23 | Wong A G, Matzger A J, Yaghi O M. Exceptional H2 saturation uptake in microporous metal-organic frameworks[J]. Journal of the American Chemical Society, 2006, 128(11): 3494-3495. |
24 | Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
25 | Dybtsev D N, Chun H, Kim K. Three-dimensional metal-organic framework with (3,4)-connected net, synthesized from an ionic liquid medium[J]. Chem. Commun. (Camb.), 2004, 14: 1594-1595. |
26 | Tian Y Q, Cai C X, Ren X M, et al. The silica-like extended polymorphism of cobalt(Ⅱ) imidazolate three-dimensional frameworks: X-ray single-crystal structures and magnetic properties[J]. Chemistry, 2003, 9(22): 5673-5685. |
27 | Tian Y Q, Chen Z X, Weng L H, et al. Two polymorphs of cobalt(Ⅱ) imidazolate polymers synthesized solvothermally by using one organic template N,N-dimethylacetamide[J]. Inorganic Chemistry, 2004, 43(15): 4631-4635. |
28 | Tian Y Q, Zhao Y M, Chen Z X, et al. Design and generation of extended zeolitic metal-organic frameworks (ZMOFs): synthesis and crystal structures of zinc(Ⅱ) imidazolate polymers with zeolitic topologies[J]. Chemistry, 2007, 13(15): 4146-4154. |
29 | Johnson J A, Zhang X, Reeson T C, et al. Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework viain situ metalation[J]. Journal of the American Chemical Society, 2014, 136(45): 15881-15884. |
30 | Zhao Y, Qi S, Niu Z, et al. Robust corrole-based metal-organic frameworks with rare 9-connected Zr/Hf-oxo clusters[J]. Journal of the American Chemical Society, 2019, 141(36): 14443-14450. |
31 | Feng D, Gu Z Y, Li J R, et al. Zirconium‐metalloporphyrin PCN‐222: mesoporous metal-organic frameworks with ultrahigh stability As biomimetic catalysts[J]. Angewandte Chemie International Edition, 2012, 51(41): 10307-10310. |
32 | Feng D, Chung W C, Wei Z, et al. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. Journal of the American Chemical Society, 2013, 135(45): 17105-17110. |
33 | Feng D, Gu Z Y, Chen Y P, et al. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology[J]. Journal of the American Chemical Society, 2014, 136(51): 17714-17717. |
34 | Feng D, Jiang H L, Chen Y P, et al. Metal-organic frameworks based on previously unknown Zr8/Hf8 cubic clusters[J]. Inorganic Chemistry, 2013, 52(21): 12661-12667. |
35 | 邹超. 金属卟啉框架材料的设计合成及应用研究[D]. 杭州: 浙江大学, 2013. |
Zou C. Design, syntheses and applications of metalloporphyrinic framework materials[D]. Hangzhou: Zhejiang University, 2013. | |
36 | Wu J X, Hou S Z, Zhang X D, et al. Cathodized copper porphyrin metal-organic framework nanosheets for selective formate and acetate production from CO2 electroreduction[J]. Chemical Science, 2019, 10(7): 2199-2205. |
37 | Wang X, Zhang X, Zhou W, et al. An ultrathin porphyrin-based metal-organic framework for efficient photocatalytic hydrogen evolution under visible light[J]. Nano Energy, 2019, 62: 250-258. |
38 | Fateeva A, Chater P A, Ireland C P, et al. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis[J]. Angewandte Chemie International Edition, 2012, 51(30): 7440-7444. |
39 | Leng F, Liu H, Ding M, et al. Boosting photocatalytic hydrogen production of porphyrinic MOFs: the metal location in metalloporphyrin matters[J]. ACS Catalysis, 2018, 8(5): 4583-4590. |
40 | 王强, 徐睿, 王旭生, 等. 铂纳米颗粒修饰的多孔卟啉基金属-有机框架化合物高效光催化产氢[J]. 无机化学学报, 2017, 33(11): 2038-2044. |
Wang Q, Xu R, Wang X S, et al. Platinum nanoparticle-decorated porous porphyrin-based metal-organic framework for photocatalytic hydrogen production[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(11): 2038-2044. | |
41 | Xiao J D, Shang Q, Xiong Y, et al. Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles: the platinum location matters[J]. Angewandte Chemie International Edition, 2016, 55(32): 9389-9393. |
42 | He T, Chen S, Ni B, et al. Zirconium-porphyrin‐based metal-organic framework hollow nanotubes for immobilization of noble‐metal single atoms[J]. Angewandte Chemie, 2018, 130(13): 3551-3556. |
43 | Sasan K, Lin Q, Mao C Y, et al. Incorporation of iron hydrogenase active sites into a highly stable metal-organic framework for photocatalytic hydrogen generation[J]. Chemical Communications, 2014, 50(72): 10390-10393. |
44 | Zuo Q, Liu T, Chen C, et al. Ultrathin metal-organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution[J]. Angewandte Chemie, 2019, 131(30): 10304-10309. |
45 | Xiao J D, Jiang H L. Metal-organic frameworks for photocatalysis and photothermal catalysis[J]. Accounts of Chemical Research, 2018, 52(2): 356-366. |
46 | Dai F, Fan W, Bi J, et al. A lead-porphyrin metal-organic framework: gas adsorption properties and electrocatalytic activity for water oxidation[J]. Dalton Transactions, 2016, 45(1): 61-65. |
47 | Li D J, Gu Z G, Zhang W, et al. Epitaxial encapsulation of homodispersed CeO2 in a cobalt-porphyrin network derived thin film for the highly efficient oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(38): 20126-20130. |
48 | Mirza S, Chen H, Chen S M, et al. Insight into Fe (Salen) encapsulated Co-porphyrin framework derived thin film for efficient oxygen evolution reaction[J]. Crystal Growth & Design, 2018, 18(11): 7150-7157. |
49 | Paille G, Gomez M, Roch C, et al. A fully noble metal-free photosystem based on cobalt-polyoxometalates immobilized in a porphyrinic metal-organic framework for water oxidation[J]. Journal of the American Chemical Society, 2018, 140(10): 3613-3618. |
50 | Eddaoudi M, Kim J, Rosi N L, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
51 | Kumar S, Wani M Y, Arranja C T, et al. Porphyrins as nanoreactors in the carbon dioxide capture and conversion: a review[J]. Journal of Materials Chemistry, 2015, 3(39): 19615-19637. |
52 | Guo R M, Bai J Q, Zhang H, et al. Metal-organic frameworks for catalytic oxidation[J]. Progress in Chemistry, 2016, 28(2/3): 232-243. |
53 | Xu H Q, Hu J, Wang D, et al. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states[J]. Journal of the American Chemical Society, 2015, 137(42): 13440-13443. |
54 | Liu Y, Yang Y, Sun Q, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework[J]. ACS Appl. Mater. Interfaces, 2013, 5(15): 7654-7658. |
55 | Zhang H, Wei J, Dong J, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie, 2016, 128(46): 14522-14526. |
56 | Sadeghi N, Sharifnla S, Do T O. Optimization and modeling of CO2 photoconversion using a response surface methodology with porphyrin-based metal organic framework[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(1): 411-431. |
57 | Liu J, Fan Y Z, Li X, et al. Catalytic space engineering of porphyrin metal-organic frameworks for combined CO2 capture and conversion at a low concentration[J]. ChemSusChem, 2018, 11(14): 2340-2347. |
58 | He L, Nath J K, Lin Q. Robust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonates[J]. Chem. Commun. (Camb.), 2019, 55(3): 412-415. |
59 | Ye L, Gao Y, Cao S, et al. Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal-organic framework nanosheets[J]. Applied Catalysis B-Environmental, 2018, 227: 54-60. |
60 | Zhang X D, Hou S Z, Wu J X, et al. Two‐dimensional metal-organic framework nanosheets with cobalt-porphyrins for high-performance CO2 electroreduction[J]. Chemistry-A European Journal, 2020, 26(7): 1604-1611. |
61 | Wang L, Jin P, Huang J, et al. Integration of copper (II)-porphyrin zirconium metal-organic framework and titanium dioxide to construct z-scheme system for highly improved photocatalytic CO2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(18): 15660-15670. |
62 | Guntern Y T, Pankhurst J R, Vavra J, et al. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion[J]. Angewandte Chemie International Edition, 2019, 58(36): 12632-12639. |
63 | Zhou Y, Yang W, Qin M, et al. Self-assembly of metal-organic framework thin films containing metalloporphyrin and their photocatalytic activity under visible light[J]. Applied Organometallic Chemistry, 2016, 30(4): 188-192. |
64 | He J, Zhang Y, He J, et al. Enhancement of photoredox catalytic properties of porphyrinic metal-organic frameworks based on titanium incorporation via post-synthetic modification[J]. Chem. Commun. (Camb.), 2018, 54(62): 8610-8613. |
65 | Gao Y X, Xia J, Liu D C, et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light[J]. Chemical Engineering Journal, 2019, 378: 122118. |
66 | 韩雅楠, 张宝, 冯亚青. 铁-锌卟啉框架材料及其可见光催化降解罗丹明[J]. 精细化工, 2019, 36: 1428-1433. |
Han Y N, Zhang B, Feng Y Q. Iron (Ⅲ)-zinc (Ⅱ) porphyrin framework for visible light photocatalytic degradation of rhodamine B[J]. Fine Chemicals, 2019, 36: 1428-1433. | |
67 | Meng A N, Chaihu L X, Chen H H, et al. Ultrahigh adsorption and singlet-oxygen mediated degradation for efficient synergetic removal of bisphenol A by a stable zirconium-porphyrin metal-organic framework[J]. Scientific Reports, 2017, 7(1): 1-9. |
68 | Zhao Y, Dong Y, Lu F, et al. Coordinative integration of a metal-porphyrinic framework and TiO2 nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities[J]. Journal of Materials Chemistry A, 2017, 5(29): 15380-15389. |
69 | Johnson J A, Luo J, Zhang X, et al. Porphyrin-metalation-mediated tuning of photoredox catalytic properties in metal-organic frameworks[J]. ACS Catalysis, 2015, 5(9): 5283-5291. |
70 | Deenadayalan M S, Sharma N, Verma P K, et al. Visible-light-assisted photocatalytic reduction of nitroaromatics by recyclable Ni(Ⅱ)-porphyrin metal–organic framework (MOF) at RT[J]. Inorganic Chemistry, 2016, 55(11): 5320-5327. |
71 | Zhao F Y, Li W J, Guo A, et al. Zn (II) porphyrin based nano-/microscale metal-organic frameworks: morphology dependent sensitization and photocatalytic oxathiolane deprotection[J]. RSC Advances, 2016, 6(31): 26199-26202. |
72 | Chen Y Z, Wang Z U, Wang H, et al. Singlet oxygen-engaged selective photo-oxidation over Pt nanocrystals/porphyrinic MOF: the roles of photothermal effect and Pt electronic state[J]. Journal of the American Chemical Society, 2017, 139(5): 2035-2044. |
73 | Keum Y, Park S, Chen Y P, et al. Titanium‐carboxylate metal-organic framework based on an unprecedented Ti-oxo chain cluster[J]. Angewandte Chemie, 2018, 130(45): 15068-15072. |
74 | Xu C, Liu H, Li D, et al. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer[J]. Chemical Science, 2018, 9(12): 3152-3158. |
75 | Shi L, Yang L, Zhang H, et al. Implantation of iron(Ⅲ) in porphyrinic metal organic frameworks for highly improved photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 224: 60-68. |
76 | Ghaleno M R, Ghaffari M M, Khajeh M, et al. Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction[J]. J. Colloid Interface Sci., 2019, 535: 214-226. |
[1] | Yin XU, Jie CAI, Lu CHEN, Yu PENG, Fuzhen LIU, Hui ZHANG. Advances in heterogeneous visible light photocatalysis coupled with persulfate activation for water pollution control [J]. CIESC Journal, 2023, 74(3): 995-1009. |
[2] | Guojun XI, Zihan LIU, Guangping LEI. Enhanced adsorption and separation of low concentration coalbed methane based on synergistic effect between FeTPPs and CuBTC [J]. CIESC Journal, 2022, 73(9): 3940-3949. |
[3] | Mai ZHANG, Yao TIAN, Zhiqi GUO, Ye WANG, Guangjin DOU, Hao SONG. Design and optimization of photocatalysis-biological hybrid system for green synthesis of fuels and chemicals [J]. CIESC Journal, 2022, 73(7): 2774-2789. |
[4] | DAI Xiaoye, AN Qingsong, XU Yunting, SHI Lin. Review of waste refrigerant destruction methods [J]. CIESC Journal, 2021, 72(S1): 1-6. |
[5] | XIE Qinyin, HUANG Xiaolian, LI Yuan, LI Ling, GE Xuehui, QIU Ting. Design optimization and photocatalytic performance research of TiO2 planar microreactor [J]. CIESC Journal, 2021, 72(7): 3626-3636. |
[6] | ZHANG Jiahe, YUAN Ye, WANG Ming, WANG Zhi, WANG Jixiao. Research progress in polymer-metal-organic frameworks [J]. CIESC Journal, 2021, 72(2): 709-726. |
[7] | Bo LIU, Yichang PAN, Rongfei ZHOU, Weihong XING. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation [J]. CIESC Journal, 2021, 72(12): 6073-6085. |
[8] | Yongqiang DANG,Boni LI,Keke LI,Jianlan ZHANG,Xiangyu FENG,Yating ZHANG. Research progress in photocatalytic reduction of CO2 with iron-based catalysts [J]. CIESC Journal, 2021, 72(10): 5016-5027. |
[9] | REN Jing, TAN Ling, ZHAO Yufei, SONG Yufei. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction [J]. CIESC Journal, 2021, 72(1): 398-424. |
[10] | ZHANG Guping, WANG Beibei, ZHOU Zhou, CHEN Dongyun, LU Jianmei. Research progress of semiconductor materials for photocatalytic low concentration nitrogen oxides [J]. CIESC Journal, 2021, 72(1): 259-275. |
[11] | Qi ZHOU, Honglei DING, Detong GUO, Weiguo PAN, Wei DU. Recent advances in catalytic methods of CO2 hydrogenation to clean energy [J]. CIESC Journal, 2020, 71(8): 3428-3443. |
[12] | Jingyu HU, Rong YAO, Yuhang PAN, Chao ZHU, Shuang SONG, Yi SHEN. Photo-assisted regeneration of titanium dioxide/layered double hydroxide for removal of organic dyes in water [J]. CIESC Journal, 2020, 71(7): 3296-3303. |
[13] | Shuang ZONG, Xinying LIU, Aibing CHEN. Metal-organic frameworks-derived zero-dimensional materials for supercapacitors [J]. CIESC Journal, 2020, 71(6): 2612-2627. |
[14] | Yaju CHEN,Zhongxiu LIANG,Xiantai ZHOU,Hongbing JI. CoTPP-TBAB catalyzed tandem transformation of styrene carbonate from styrene in the presence of O2 and CO2 [J]. CIESC Journal, 2020, 71(11): 4981-4989. |
[15] | Yunlong ZHOU, Xiaoyuan YE, Dongyao LIN. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation [J]. CIESC Journal, 2019, 70(7): 2717-2726. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||