CIESC Journal ›› 2020, Vol. 71 ›› Issue (6): 2481-2491.DOI: 10.11949/0438-1157.20200129
• Reviews and monographs • Previous Articles Next Articles
Muyun ZHENG(),Yuchi WAN,Ruitao LYU()
Received:
2020-02-11
Revised:
2020-03-29
Online:
2020-06-05
Published:
2020-06-05
Contact:
Ruitao LYU
通讯作者:
吕瑞涛
作者简介:
郑沐云(1997—),男,博士研究生,基金资助:
CLC Number:
Muyun ZHENG, Yuchi WAN, Ruitao LYU. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491.
郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491.
Add to citation manager EndNote|Ris|BibTeX
9 | Tang C, Qiao S. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48: 3166-3180. |
10 | Zhao S, Lu X, Wang L, et al. Carbon-based metal-free catalysts for electrocatalytic rreduction of nitrogen for synthesis of ammonia at ambient conditions[J]. Advanced Materials, 2019, 31: 1805367. |
11 | Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8: 1800369. |
12 | Hu L, Xing Z, Feng X. Understanding the electrocatalytic interface for ambient ammonia synthesis[J]. ACS Energy Letters, 2020, 5(2): 430-436. |
13 | Chen T, Liu S, Ying H, et al. Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction[J]. Chemistry—an Asian Journal, 2020, 15: 1-8. |
14 | Hao Y, Guo Y, Chen L, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2: 448-456. |
15 | Zhang G, Ji Q, Zhang K, et al. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation[J]. Nano Energy, 2019, 59: 10-16. |
16 | Hu L, Khaniya A, Wang J, et al. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst[J]. ACS Catalysis, 2018, 8(10): 9312-9319. |
17 | Andersen S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570: 504-508. |
18 | Thomas D H, Rey M, Jackson P E. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column[J]. Journal of Chromatography A, 2002, 956: 181–186. |
19 | Li L, Tang C, Yao D, et al. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte[J]. ACS Energy Letters, 2019, 4(9): 2111-2116. |
20 | Yang M, Huo R, Shen H, et al. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2957-2963. |
1 | Geological Survey U.S.. Mineral Commodity Summaries 2019[R]. Mineral Commodity Summaries. Reston, VA: U.S. Geological Survey, 2019: 200. |
2 | van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
21 | Kordali V, Kyriacou G, Lambrou C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000, 17: 1673-1674. |
22 | Tao H, Choi C, Ding L, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
23 | Geng Z, Liu Y, Kong X, et al. Achieving a record‐high yield rate of 120.9 μgNH3·mgcat.-1·h-1 for N2 electrochemical reduction over Ru single‐atom catalysts[J]. Advanced Materials, 2018, 30(40): 1803498. |
24 | Su J, Zhao H, Fu W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589. |
25 | Lv J, Wu S, Tian Z, et al. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 12627. |
26 | Ma M, Han X, Li H, et al. Tuning electronic structure of PdZn nanocatalyst via acid-etching strategy for highly selective and stable electrolytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 265: 118568. |
3 | Licht S, Cui B C, Wang B, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640. |
4 | Cui X, Tang C, Liu X M, et al. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts[J]. Chemistry A European Journal, 2018, 24(69): 18494-18501. |
5 | Li M, Huang H, Low J, et al. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction[J]. Small Methods, 2019, 3: 1800388. |
6 | Zhang S, Zhao Y, Shi R, et al. Photocatalytic ammonia synthesis: recent progress and future[J]. EnergyChem, 2019, 1: 100013. |
7 | Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90. |
8 | Zhao Y, Shi R, Bian X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?[J]. Advanced Science, 2019, 6: 1802109. |
27 | Liu D, Zhang G, Ji Q, et al. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate [J]. ACS Applied Materials & Interfaces, 2019, 11: 25758-25765. |
28 | Zhao X, Yao C, Chen H, et al. In situ nano Au triggered by a metal boron organic polymer: efficient electrochemical N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 20945. |
29 | Xue Z, Zhang S, Lin Y, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency[J]. Journal of the American Chemical Society, 2019, 141: 14976-14980. |
30 | Wan J, Chen W, Jia C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties[J]. Advanced Materials, 2018, 30: 1705369. |
31 | Wang H, Yu H, Wang Z, et al. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia[J]. Small, 2019, 15: 1804769. |
32 | Zhang J, Ji Y, Wang P, et al. Adsorbing and activating N2 on heterogeneous Au–Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2020, 30: 1906579. |
33 | Lan R, Irvine J T, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145. |
34 | Li T, Yan X, Huang L, et al. Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 14462. |
35 | Yi S, Liu G, Liu Z, et al. Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium–nitrogen battery[J]. Journal of Materials Chemistry A, 2019, 7: 19950. |
36 | Yu G, Guo H, Kong W, et al. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction[J]. Journal of Materials Chemistry A, 2019, 7: 19657. |
37 | Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation[J]. Nature Communications, 2019, 10: 2877. |
38 | Fang C, Bi T, Xu X, et al. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction[J]. Advanced Materials Interfaces, 2019, 6: 1901034. |
39 | Cheng S, Gao Y, Yan Y, et al. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2[J]. Journal of Energy Chemistry, 2019, 39: 144-151. |
40 | Han Z, Choi C, Hong S, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 257: 117896. |
41 | Kong W, Gong F, Zhou Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 18823. |
42 | Feng J, Zhu X, Chen Q, et al. Ultrasmall V8C7 nanoparticles embedded in conductive carbon for efficient electrocatalytic N2 reduction toward ambient NH3 production[J]. Journal of Materials Chemistry A, 2019, 7: 26227. |
43 | Chang B, Deng L, Wang S, et al. A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media[J]. Journal of Materials Chemistry A, 2020, 8: 91-96. |
44 | Sekiguchi Y, Arashiba K, Tanaka H, et al. Catalytic reduction of molecular dinitrogen to ammonia and hydrazine using vanadium complexes[J]. Angewandte Chemie International Edition, 2018, 57: 9064–9068. |
45 | Nash J, Yang X, Anibal J, et al. Elucidation of the active phase and deactivation mechanisms of chromium nitride in the electrochemical nitrogen reduction reaction[J]. The Journal of Physical Chemistry C, 2019, 123(39): 23967-23975. |
46 | Riyaz M, Goel N. Single‐atom catalysis using chromium embedded in divacant graphene for conversion of dinitrogen to ammonia[J]. ChemPhysChem, 2019, 20: 1954–1959. |
47 | Xie H, Wang H, Geng Q, et al. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Inorganic Chemistry, 2019, 58(9): 5423-5427. |
48 | Chu K, Liu Y, Li Y, et al. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264: 118525. |
49 | Ma D, Zeng Z, Liu L, et al. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers[J]. The Journal of Physical Chemistry C, 2019, 123(31): 19066-19076. |
50 | Xiong W, Guo Z, Zhao S, et al. Facile, cost-effective plasma synthesis of selfsupportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 19977. |
51 | Lv F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media[J]. Nano Energy, 2019, 61: 420-427. |
52 | Guo Y, Yao Z, Timmer B J J, et al. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range[J]. Nano Energy, 2019, 62: 282-288. |
53 | Guo C, Liu X, Gao L, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 263: 118296. |
54 | He C, Wu Z, Zhao L, et al. Identification of FeN4 as an efficient active site for electrochemical N2 reduction[J]. ACS Catalysis, 2019, 9: 7311-7317. |
55 | Liu Y, Xu Q, Fan X, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 26358. |
56 | Chu K, Liu Y, Li Y, et al. Efficient electrocatalytic N2 reduction on CoO quantum dots[J]. Journal of Materials Chemistry A, 2019, 7: 4389. |
57 | Wu X, Wang Z, Han Y, et al. Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions[J]. Journal of Materials Chemistry A, 2020, 8: 543. |
58 | Arifa M, Yasina G, Luo L, et al. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia[J]. Applied Catalysis B: Environmental, 2020, 265: 118559. |
59 | Yuan M, Zhang H, Gao D, et al. Support effect boosting electrocatalytic N2 reduction activity of Ni2P/N,P-codoped carbon nanosheet hybrids[J]. Journal of Materials Chemistry A, 2020, 8: 2691-2700. |
60 | Han J, Liu Z, Ma Y, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270. |
61 | Chu K, Liu Y, Li Y, et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7081-7090. |
62 | Zhang J, Tian X, Liu M, et al. Cobalt-modulated molybdenum–dinitrogen interaction in MoS2 for catalyzing ammonia synthesis[J]. Journal of the American Chemical Society, 2019, 141(49): 19269-19275. |
63 | Qin B, Li Y, Zhang Q, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum–iron carbide through the experiment and theory[J]. Nano Energy, 2020, 68: 104374. |
64 | Yang X, Ling F, Su J, et al. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118477. |
65 | Huang B, Li N, Ong W, et al. Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation[J]. Journal of Materials Chemistry A, 2019, 7: 27620-27631. |
66 | Huang Y, Yang T, Yang L, et al. Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 15173-15180. |
67 | Yang T, Song T T, Zhou J, et al. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation[J]. Nano Energy, 2020, 68: 104304. |
68 | Hui L, Xue Y, Yu H, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683. |
69 | Li Y, Zhang Q, Li C, et al. Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction[J]. Journal of Materials Chemistry A, 2019, 7: 22242-22247. |
70 | Sun Z, Huo R, Choi C, et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure[J]. Nano Energy, 2019, 62: 869-875. |
71 | Yao X, Chen Z, Wang Y, et al. Activated basal planes of WS2 by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 25961-25968. |
72 | Jin H, Li L, Liu X, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31: 1902709. |
73 | Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
74 | Li P, Fu W, Zhuang P, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J]. Small, 2019, 15: 1902535. |
75 | Chu K, Liu Y, Li Y, et al. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31806-31815. |
76 | Zhang X, Wu T, Wang H, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2‑to-NH3 fixation in neutral media[J]. ACS Catalysis, 2019, 9: 4609-4615. |
77 | Chen C, Yan D, Wang Y, et al. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency[J]. Small, 2019, 15: 1805029. |
78 | Yang X, Li K, Cheng D, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7762-7769. |
79 | Ren J, Wan C, Pei T, et al. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms[J]. Applied Catalysis B: Environmental, 2020, 266: 118633. |
80 | Yu J, Li J, Zhu X, et al. Structured polyaniline: an efficient and durable electrocatalyst for the nitrogen reduction reaction in acidic media[J]. ChemElectroChem, 2019, 6: 2215-2218. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[10] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[13] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[14] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[15] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||