CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 4987-5001.DOI: 10.11949/0438-1157.20210732
• Reviews and monographs • Previous Articles Next Articles
Wei DENG1(),Chunho LAM2(),Zhe XIONG1,Xuepeng WANG1,Jun XU1,Long JIANG1,Sheng SU1,Yi WANG1(),Song HU1,Jun XIANG1
Received:
2021-06-01
Revised:
2021-07-22
Online:
2021-10-05
Published:
2021-10-05
Contact:
Chunho LAM,Yi WANG
邓伟1(),林镇浩2(),熊哲1,汪雪棚1,徐俊1,江龙1,苏胜1,汪一1(),胡松1,向军1
通讯作者:
林镇浩,汪一
作者简介:
邓伟(1987—),男,博士研究生,工程师,基金资助:
CLC Number:
Wei DENG,Chunho LAM,Zhe XIONG,Xuepeng WANG,Jun XU,Long JIANG,Sheng SU,Yi WANG,Song HU,Jun XIANG. Research progress in electrocatalytic hydrogenation upgrading of bio-oil[J]. CIESC Journal, 2021, 72(10): 4987-5001.
邓伟,林镇浩,熊哲,汪雪棚,徐俊,江龙,苏胜,汪一,胡松,向军. 生物油电催化加氢提质技术研究进展[J]. 化工学报, 2021, 72(10): 4987-5001.
Add to citation manager EndNote|Ris|BibTeX
化合物 | 相对含量/ % | 化合物 | 相对含量/ % |
---|---|---|---|
酸 | 5~10 | 酚 | 20~30 |
甲酸 | 0.3~9.1 | 苯酚 | 0.1~3.8 |
乙酸 | 0.5~12 | 二乙酰基苯酚 | 0.1~1.3 |
丙酸 | 0.1~1.8 | 对羟基苯酚 | 0.1~1.9 |
乙酰丙酸 | 0.1~0.3 | 甲基苯酚 | 0.1~5 |
醇 | 0~5 | 愈创木酚 | 2~14 |
甲醇 | 0.4~2.4 | 2-甲氧基苯酚 | 0.1~1.1 |
乙醇 | 0.6~1.4 | 4-甲基愈创木酚 | 0.1~1.9 |
乙二醇 | 0.7~2 | 异丁子香酚 | 0.1~7.2 |
酮 | 0~10 | 丁子香酚 | 0.1~2.3 |
丙酮 | 2.8 | 丁香酚 | 2~8 |
羟基丙酮 | 0.7~7.4 | 2,6-二甲氧基苯酚 | 0.7~4.8 |
醛 | 5~20 | 丙基丁香酚 | 0.1~1.5 |
甲醛 | 0.1~3.3 | 丁香醛 | 0.1~1.5 |
乙醛 | 0.1~8.5 | 呋喃 | 0~12 |
乙二醛 | 0.9~4.6 | 呋喃酮 | 0.1~1.1 |
羟基乙醛 | 0.9~13 | 糠醛 | 0.1~1.1 |
糖 | 5~30 | 糠醇 | 0.1~5.2 |
D-木糖 | 0.1~3.2 | 5-羟甲基糠醛 | 0.3~2.2 |
左旋葡聚糖 | 0.4~1.4 | 其他 | — |
葡萄糖 | 0.4~1.3 | 甲基环戊烯酮 | 0.1~1.9 |
果糖 | 0.7~2.9 | 3-甲氧基苯甲醛 | 0.1~1.1 |
聚纤维二糖 | 0.6~3.2 | 低聚物 | 0~20 |
1,6-脱水呋喃葡萄糖 | 0.1~3.1 | 水 | 15~30 |
Table 1 General composition of bio-oils
化合物 | 相对含量/ % | 化合物 | 相对含量/ % |
---|---|---|---|
酸 | 5~10 | 酚 | 20~30 |
甲酸 | 0.3~9.1 | 苯酚 | 0.1~3.8 |
乙酸 | 0.5~12 | 二乙酰基苯酚 | 0.1~1.3 |
丙酸 | 0.1~1.8 | 对羟基苯酚 | 0.1~1.9 |
乙酰丙酸 | 0.1~0.3 | 甲基苯酚 | 0.1~5 |
醇 | 0~5 | 愈创木酚 | 2~14 |
甲醇 | 0.4~2.4 | 2-甲氧基苯酚 | 0.1~1.1 |
乙醇 | 0.6~1.4 | 4-甲基愈创木酚 | 0.1~1.9 |
乙二醇 | 0.7~2 | 异丁子香酚 | 0.1~7.2 |
酮 | 0~10 | 丁子香酚 | 0.1~2.3 |
丙酮 | 2.8 | 丁香酚 | 2~8 |
羟基丙酮 | 0.7~7.4 | 2,6-二甲氧基苯酚 | 0.7~4.8 |
醛 | 5~20 | 丙基丁香酚 | 0.1~1.5 |
甲醛 | 0.1~3.3 | 丁香醛 | 0.1~1.5 |
乙醛 | 0.1~8.5 | 呋喃 | 0~12 |
乙二醛 | 0.9~4.6 | 呋喃酮 | 0.1~1.1 |
羟基乙醛 | 0.9~13 | 糠醛 | 0.1~1.1 |
糖 | 5~30 | 糠醇 | 0.1~5.2 |
D-木糖 | 0.1~3.2 | 5-羟甲基糠醛 | 0.3~2.2 |
左旋葡聚糖 | 0.4~1.4 | 其他 | — |
葡萄糖 | 0.4~1.3 | 甲基环戊烯酮 | 0.1~1.9 |
果糖 | 0.7~2.9 | 3-甲氧基苯甲醛 | 0.1~1.1 |
聚纤维二糖 | 0.6~3.2 | 低聚物 | 0~20 |
1,6-脱水呋喃葡萄糖 | 0.1~3.1 | 水 | 15~30 |
序号 | 提质方法 | 方法描述 | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|
1 | 催化 加氢 | 高温(300~600℃)高压条件下,有机组分加氢提高氢碳比 | 易于与传统石油提质工艺整合;非均相催化;高脱氧率;可生产高热值产品 | 高温导致催化剂积炭;需消耗氢气;可能产生甲烷;高温加速生物油聚合 | [ |
2 | 加氢 裂解 | 高温高压(500~700℃,0.7~13.8 MPa)条件下,有机组分加氢提高氢碳比,同时生成轻质芳烃 | 生成小分子加氢产物;积炭率低于催化加氢;能分解高沸点芳烃 原料 | 工况更苛刻;氢气消耗更多;加工成本高;积炭不可避免 | [ |
3 | 催化 裂解 | 在高温(300~800℃)下,利用催化剂通过脱羰和脱羧反应以CO2和水的形式脱除氧 | 在常压下反应;不需要氢气;能耗低、成本低;催化剂改性用于特定用途 | 烃类产率低;结焦率高;催化剂积炭失活 | [ |
4 | 酯化 | 将腐蚀性羧酸转化为中性酯作为燃料添加剂,通过稳定反应中间体来降低生物油聚合的趋势 | 可由固体酸或液体酸催化;通过去除反应活性化合物(例如糖和呋喃类)来提升生物油稳定性;反应工况比催化加氢温和,不需要 氢气 | 生物油中的氧含量不会降低,因此热值不会提高;酯化过程中糖脱水和醚化反应会产生较多的水;醇之间的分子间醚化会消耗醇;无法避免积炭;醇回收较难 | [ |
5 | 超临界流体 提质 | 将生物油置于超临界溶剂介质中,如甲醇、乙醇、异丙醇、水、丙酮、二氧化碳等 | 超临界甲醇中酯化率高;燃料的产率和质量较高 | 实现超临界工况能量成本高;溶剂成本高;溶剂脱除成本高 | [ |
6 | 乳化 | 在表面活性剂的作用下将生物油与另一种有机溶剂混合 | 降低生物油的黏度;促进生物油酸性组分与(醇)溶剂的酯化反应;简单、成本低廉;提高生物油储存稳定性 | 表面活性剂选择要求高;无法实现脱氧 | [ |
7 | 蒸汽 重整 | 促进蒸汽重整,在高温(500~800℃)下将生物油转化为CO和H2合成气 | 利用生物油生产氢气,用于生物油加氢;氢气产率比由生物质气化产氢更容易调节 | 聚合导致快速积炭;重质有机组分难以重整;高黏度导致进料困难 | [ |
8 | 催化转移氢化 | 以有机物(醇类、甲酸等)为氢供体,对生物油中氢受体进行催化转移氢化的还原反应 | 反应温度、压力范围广;无须外部氢气源 | 常温常压下加氢效率低、反应速率低;供氢体转化为不饱和产物 | [ |
9 | 光催化重整 | 通过半导体催化剂利用太阳能将生物油转化为H2和碳基化学品 | 反应条件温和 | 生成强氧化性自由基中间体,导致聚合;太阳能利用率低 | [ |
10 | 电催化加氢 | 对生物油中的反应活性物进行电化学加氢,以防止其发生聚合 | 反应条件温和,常温常压实现加氢;无须外部氢气源 | 需添加支持电解质以提高反应液体导 电性 | [ |
Table 2 Summary of bio-oil upgrading techniques
序号 | 提质方法 | 方法描述 | 优点 | 缺点 | 文献 |
---|---|---|---|---|---|
1 | 催化 加氢 | 高温(300~600℃)高压条件下,有机组分加氢提高氢碳比 | 易于与传统石油提质工艺整合;非均相催化;高脱氧率;可生产高热值产品 | 高温导致催化剂积炭;需消耗氢气;可能产生甲烷;高温加速生物油聚合 | [ |
2 | 加氢 裂解 | 高温高压(500~700℃,0.7~13.8 MPa)条件下,有机组分加氢提高氢碳比,同时生成轻质芳烃 | 生成小分子加氢产物;积炭率低于催化加氢;能分解高沸点芳烃 原料 | 工况更苛刻;氢气消耗更多;加工成本高;积炭不可避免 | [ |
3 | 催化 裂解 | 在高温(300~800℃)下,利用催化剂通过脱羰和脱羧反应以CO2和水的形式脱除氧 | 在常压下反应;不需要氢气;能耗低、成本低;催化剂改性用于特定用途 | 烃类产率低;结焦率高;催化剂积炭失活 | [ |
4 | 酯化 | 将腐蚀性羧酸转化为中性酯作为燃料添加剂,通过稳定反应中间体来降低生物油聚合的趋势 | 可由固体酸或液体酸催化;通过去除反应活性化合物(例如糖和呋喃类)来提升生物油稳定性;反应工况比催化加氢温和,不需要 氢气 | 生物油中的氧含量不会降低,因此热值不会提高;酯化过程中糖脱水和醚化反应会产生较多的水;醇之间的分子间醚化会消耗醇;无法避免积炭;醇回收较难 | [ |
5 | 超临界流体 提质 | 将生物油置于超临界溶剂介质中,如甲醇、乙醇、异丙醇、水、丙酮、二氧化碳等 | 超临界甲醇中酯化率高;燃料的产率和质量较高 | 实现超临界工况能量成本高;溶剂成本高;溶剂脱除成本高 | [ |
6 | 乳化 | 在表面活性剂的作用下将生物油与另一种有机溶剂混合 | 降低生物油的黏度;促进生物油酸性组分与(醇)溶剂的酯化反应;简单、成本低廉;提高生物油储存稳定性 | 表面活性剂选择要求高;无法实现脱氧 | [ |
7 | 蒸汽 重整 | 促进蒸汽重整,在高温(500~800℃)下将生物油转化为CO和H2合成气 | 利用生物油生产氢气,用于生物油加氢;氢气产率比由生物质气化产氢更容易调节 | 聚合导致快速积炭;重质有机组分难以重整;高黏度导致进料困难 | [ |
8 | 催化转移氢化 | 以有机物(醇类、甲酸等)为氢供体,对生物油中氢受体进行催化转移氢化的还原反应 | 反应温度、压力范围广;无须外部氢气源 | 常温常压下加氢效率低、反应速率低;供氢体转化为不饱和产物 | [ |
9 | 光催化重整 | 通过半导体催化剂利用太阳能将生物油转化为H2和碳基化学品 | 反应条件温和 | 生成强氧化性自由基中间体,导致聚合;太阳能利用率低 | [ |
10 | 电催化加氢 | 对生物油中的反应活性物进行电化学加氢,以防止其发生聚合 | 反应条件温和,常温常压实现加氢;无须外部氢气源 | 需添加支持电解质以提高反应液体导 电性 | [ |
序号 | 化合物 | 实验条件 | 电解质 | 催化剂 | 产物 | 法拉第 效率/% | 转化 频率/ h-1 | 文献 |
---|---|---|---|---|---|---|---|---|
1 | 苯甲醛 (20 mmol/L) | -0.9 V(vs Ag/AgCl),pH = 5, 25℃ | 乙酸缓冲液 | 5% Ni/C | 苯甲醇 | 35 | 约5000 | [ |
5% Pt/C | 约39 | 2189 | ||||||
5% Rh/C | 约65 | 2267 | ||||||
5% Pd/C | 99 | 3899 | ||||||
2 | 苯甲醛( 80 mmol/L) | -0.8 V(vs Ag/AgCl), pH<7, 常温 | 47.5%异丙醇 47.5%去离子水 5.0%乙酸 | 0.5% Pd/碳毡 | 苯甲醇 | 80~85① | 3.6 mmol/ (g cat·h) | [ |
0.5%Cu/碳毡 | 60~65① | 2.4 mmol/ (g cat·h) | ||||||
3 | 羟丙酮 (50 mmol/L) | -1.5 V(vs Ag/AgCl), pH=2, 常温 | 0.5 mol/L Na2SO4 | 1 mg/cm2 Cu/C | 丙二醇 | 11 | 420 | [ |
1 mg/cm2 Ni/C | 17 | 498 | ||||||
1 mg/cm2 CuNi/C | 16 | 534 | ||||||
1 mg/cm2 Pt/C | 20 | 516 | ||||||
1 mg/cm2 Ru/C | 22 | 840 | ||||||
1 mg/cm2 PtRu/C | 22 | 282 | ||||||
4 | 糠醛(5%) | -1.1~1.8 V(vs Ag/AgCl),pH<7, 30℃ | 0.5 mol/L H2SO4 | 1 mg/cm2 Pd/C | FA, THFA, MF, MTHF | 54 | 400① | [ |
5 | 糠醛 (100 mmol/L) | -1.1~1.8 V(vs Ag/AgCl),pH<7, 常温 | 20%(体积)乙腈 0.5 mol/L H2SO4 | Cu | FA,MA | 52.2 | N.A | [ |
20%(体积)乙腈 0.1 mol/L H2SO4 | 43.2 | |||||||
20%(体积)乙腈 0.2 mol/L NH4Cl | 47.2 | |||||||
6 | 糠醛(50 mmol/L) | -0.55 V(vs Ag/AgCl),pH<2, 23℃ | 0.5 mol/L H2SO4 | Cu | FA,MA | 55* | N.A | [ |
0.05 mol/L H2SO4 | 47* | |||||||
0.01 mol/L H2SO4 | 45* | |||||||
7 | 5-羟甲基糠醛 (50 mmol/L) | -1.5~0 V(vs Ag/AgCl),pH<7, 常温 | 0.5 mol/L H2SO4 | Fe, Ni, Cu, Pb | DHMF | N.A | N.A | [ |
Co, Ag, Au,Cd, Sb, Bi | DHMF, DHMTHF | |||||||
Pd, Pt, Al, Zn, In, Sb | DMDHF | |||||||
8 | 5-羟甲基糠醛 (10 mmol/L) | 20 mA, pH<7, 常温 | 0.2 mol/L HClO4 | Pd/VN空心纳米球 | DHMTHF | 86 | N.A | [ |
9 | 乙酰丙酸 (200 mmol/L) | -1.3 V(vs RHE),pH=0, 常温 | 0.5 mol/L H2SO4 | Pb | γ-戊内酯,戊酸 | 84 | N.A | [ |
-1.3 V(vs RHE), pH=7.5, 常温 | K2HPO4/KH2PO4 缓冲液 | γ-戊内酯 | 6 | |||||
10 | 葡萄糖 (100 mmol/L) | -1.5~0 V(vs Ag/AgCl),pH<7, 常温 | 0.1 mol/L Na2SO4 | Ni, Fe, Co, Cu, Pd, Au, Ag | 山梨醇 | N.A | N.A | [ |
Pb, Zn,Cd, Sn, In, Sb, Bi | 山梨醇,2-脱氧 山梨醇 | |||||||
Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, We, Re, Ru, Rh, Ir, Pt | 2-脱氧山梨醇 | |||||||
11 | 苯酚(20 mmol/L) | -0.28 V(vs NHE), pH<1, 55℃ | 0.1 mol/L 硅钨酸水溶液 | 10% Pd/C | 环己烷 | 98 | N.A | [ |
12 | 苯酚(16 mmol/L) | -0.9 V(vs Ag/AgCl), pH=5, 常温 | 异丙醇中30%(体积) 乙酸盐缓冲液 | 5 % Rh/C | 环己酮 环己醇 | 68 | 629 | [ |
Table 3 Studies on electrocatalytic hydrogenation of bio-oil derived model compounds
序号 | 化合物 | 实验条件 | 电解质 | 催化剂 | 产物 | 法拉第 效率/% | 转化 频率/ h-1 | 文献 |
---|---|---|---|---|---|---|---|---|
1 | 苯甲醛 (20 mmol/L) | -0.9 V(vs Ag/AgCl),pH = 5, 25℃ | 乙酸缓冲液 | 5% Ni/C | 苯甲醇 | 35 | 约5000 | [ |
5% Pt/C | 约39 | 2189 | ||||||
5% Rh/C | 约65 | 2267 | ||||||
5% Pd/C | 99 | 3899 | ||||||
2 | 苯甲醛( 80 mmol/L) | -0.8 V(vs Ag/AgCl), pH<7, 常温 | 47.5%异丙醇 47.5%去离子水 5.0%乙酸 | 0.5% Pd/碳毡 | 苯甲醇 | 80~85① | 3.6 mmol/ (g cat·h) | [ |
0.5%Cu/碳毡 | 60~65① | 2.4 mmol/ (g cat·h) | ||||||
3 | 羟丙酮 (50 mmol/L) | -1.5 V(vs Ag/AgCl), pH=2, 常温 | 0.5 mol/L Na2SO4 | 1 mg/cm2 Cu/C | 丙二醇 | 11 | 420 | [ |
1 mg/cm2 Ni/C | 17 | 498 | ||||||
1 mg/cm2 CuNi/C | 16 | 534 | ||||||
1 mg/cm2 Pt/C | 20 | 516 | ||||||
1 mg/cm2 Ru/C | 22 | 840 | ||||||
1 mg/cm2 PtRu/C | 22 | 282 | ||||||
4 | 糠醛(5%) | -1.1~1.8 V(vs Ag/AgCl),pH<7, 30℃ | 0.5 mol/L H2SO4 | 1 mg/cm2 Pd/C | FA, THFA, MF, MTHF | 54 | 400① | [ |
5 | 糠醛 (100 mmol/L) | -1.1~1.8 V(vs Ag/AgCl),pH<7, 常温 | 20%(体积)乙腈 0.5 mol/L H2SO4 | Cu | FA,MA | 52.2 | N.A | [ |
20%(体积)乙腈 0.1 mol/L H2SO4 | 43.2 | |||||||
20%(体积)乙腈 0.2 mol/L NH4Cl | 47.2 | |||||||
6 | 糠醛(50 mmol/L) | -0.55 V(vs Ag/AgCl),pH<2, 23℃ | 0.5 mol/L H2SO4 | Cu | FA,MA | 55* | N.A | [ |
0.05 mol/L H2SO4 | 47* | |||||||
0.01 mol/L H2SO4 | 45* | |||||||
7 | 5-羟甲基糠醛 (50 mmol/L) | -1.5~0 V(vs Ag/AgCl),pH<7, 常温 | 0.5 mol/L H2SO4 | Fe, Ni, Cu, Pb | DHMF | N.A | N.A | [ |
Co, Ag, Au,Cd, Sb, Bi | DHMF, DHMTHF | |||||||
Pd, Pt, Al, Zn, In, Sb | DMDHF | |||||||
8 | 5-羟甲基糠醛 (10 mmol/L) | 20 mA, pH<7, 常温 | 0.2 mol/L HClO4 | Pd/VN空心纳米球 | DHMTHF | 86 | N.A | [ |
9 | 乙酰丙酸 (200 mmol/L) | -1.3 V(vs RHE),pH=0, 常温 | 0.5 mol/L H2SO4 | Pb | γ-戊内酯,戊酸 | 84 | N.A | [ |
-1.3 V(vs RHE), pH=7.5, 常温 | K2HPO4/KH2PO4 缓冲液 | γ-戊内酯 | 6 | |||||
10 | 葡萄糖 (100 mmol/L) | -1.5~0 V(vs Ag/AgCl),pH<7, 常温 | 0.1 mol/L Na2SO4 | Ni, Fe, Co, Cu, Pd, Au, Ag | 山梨醇 | N.A | N.A | [ |
Pb, Zn,Cd, Sn, In, Sb, Bi | 山梨醇,2-脱氧 山梨醇 | |||||||
Ti, V, Cr, Mn, Zr, Nb, Mo, Hf, Ta, We, Re, Ru, Rh, Ir, Pt | 2-脱氧山梨醇 | |||||||
11 | 苯酚(20 mmol/L) | -0.28 V(vs NHE), pH<1, 55℃ | 0.1 mol/L 硅钨酸水溶液 | 10% Pd/C | 环己烷 | 98 | N.A | [ |
12 | 苯酚(16 mmol/L) | -0.9 V(vs Ag/AgCl), pH=5, 常温 | 异丙醇中30%(体积) 乙酸盐缓冲液 | 5 % Rh/C | 环己酮 环己醇 | 68 | 629 | [ |
序号 | 生物油 | 电解池 | 催化剂 | 实验条件 | 特点 | 文献 |
---|---|---|---|---|---|---|
1 | 杨树木热解生物油水溶性组分 | H型分隔 电解池 | Ru/ACC | 480 mA,6.5 h,0.1 MPa,常温 | 羰基化合物加氢成醇和二醇,生物油稳定性提高,可去除乙酸 | [ |
2 | 黄松木热解生物油 | 双膜三室 电解池 | 炭黑 | 10~50 mA,1~15.5 h,0.1 MPa,常温 | 实现从生物油中分离并收集甲酸和乙酸,但有机物的加氢速率非常低 | [ |
3 | 玉米秸秆热解生物油水溶性组分 | H型分隔 电解池 | Ru/OMC | 100 mA,3 h,0.1 MPa,25℃ | 实现生物油中小分子羰基和酚类加氢,同时在阳极实现废弃木质素或废水的氧化降解 | [ |
4 | 小麦秸秆、杨树木铁杉木和花旗松木混合热解生物油 | 连续流动 电解池 | Pd,Cu | 50~700 mA,0.1 MPa,常温 | Pd在生物油加氢反应中比Cu更稳定,Pd能将苯甲醛转化为苯甲醇,但不能转化羧酸类和酚类化合物 | [ |
5 | 稻壳热解生物油及其富芳香组分、贫芳香组分 | 未分隔 电解池 | Pt | 10 V,12 h,0.1 MPa,常温 | 小分子有机物对芳香组分的加氢起到了促进作用,生物油不同组分在电催化加氢过程中存在交互作用 | [ |
Table 4 Studies on electrocatalytic hydrogenation of bio-oil
序号 | 生物油 | 电解池 | 催化剂 | 实验条件 | 特点 | 文献 |
---|---|---|---|---|---|---|
1 | 杨树木热解生物油水溶性组分 | H型分隔 电解池 | Ru/ACC | 480 mA,6.5 h,0.1 MPa,常温 | 羰基化合物加氢成醇和二醇,生物油稳定性提高,可去除乙酸 | [ |
2 | 黄松木热解生物油 | 双膜三室 电解池 | 炭黑 | 10~50 mA,1~15.5 h,0.1 MPa,常温 | 实现从生物油中分离并收集甲酸和乙酸,但有机物的加氢速率非常低 | [ |
3 | 玉米秸秆热解生物油水溶性组分 | H型分隔 电解池 | Ru/OMC | 100 mA,3 h,0.1 MPa,25℃ | 实现生物油中小分子羰基和酚类加氢,同时在阳极实现废弃木质素或废水的氧化降解 | [ |
4 | 小麦秸秆、杨树木铁杉木和花旗松木混合热解生物油 | 连续流动 电解池 | Pd,Cu | 50~700 mA,0.1 MPa,常温 | Pd在生物油加氢反应中比Cu更稳定,Pd能将苯甲醛转化为苯甲醇,但不能转化羧酸类和酚类化合物 | [ |
5 | 稻壳热解生物油及其富芳香组分、贫芳香组分 | 未分隔 电解池 | Pt | 10 V,12 h,0.1 MPa,常温 | 小分子有机物对芳香组分的加氢起到了促进作用,生物油不同组分在电催化加氢过程中存在交互作用 | [ |
1 | 袁振宏, 雷廷宙, 庄新姝, 等. 我国生物质能研究现状及未来发展趋势分析[J]. 太阳能, 2017(2): 12-19, 28. |
Yuan Z H, Lei T Z, Zhuang X S, et al. Analysis on current situation and future development trend of biomass energy research in China[J]. Solar Energy, 2017(2): 12-19, 28. | |
2 | 谢光辉, 方艳茹, 李嵩博, 等. 废弃生物质的定义、分类及资源量研究述评[J]. 中国农业大学学报, 2019, 24(8): 1-9. |
Xie G H, Fang Y R, Li S B, et al. Review of the definition, classification, and resource assessment of biowaste[J]. Journal of China Agricultural University, 2019, 24(8): 1-9. | |
3 | 马隆龙, 唐志华, 汪丛伟, 等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊, 2019, 34(4): 434-442. |
Ma L L, Tang Z H, Wang C W, et al. Research status and future development strategy of biomass energy[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 434-442. | |
4 | 王超, 陈冠益, 兰维娟, 等. 生物质快速热解制油试验及流程模拟[J]. 化工学报, 2014, 65(2): 679-683. |
Wang C, Chen G Y, Lan W J, et al. Experimental research and process simulation on biomass fast pyrolysis for production of bio-oil[J]. CIESC Journal, 2014, 65(2): 679-683. | |
5 | 罗俊, 邵敬爱, 杨海平, 等. 生物质催化热解制备低碳烯烃的研究进展[J]. 化工进展, 2017, 36(5): 1555-1564. |
Luo J, Shao J A, Yang H P, et al. Research progresses on production of light olefins from catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1555-1564. | |
6 | Bridgwater A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
7 | 仉利, 姚宗路, 赵立欣, 等. 生物质热化学转化提质及其催化剂研究进展[J]. 化工学报, 2020, 71(8): 3416-3427. |
Zhang L, Yao Z L, Zhao L X, et al. Research progress on thermochemical conversion of biomass to enhance quality and catalyst[J]. CIESC Journal, 2020, 71(8): 3416-3427. | |
8 | Hu X, Zhang Z M, Gholizadeh M, et al. Coke formation during thermal treatment of bio-oil[J]. Energy & Fuels, 2020, 34(7): 7863-7914. |
9 | 姚燕, 王树荣, 王琦, 等. 生物油替代动力燃油的研究[J]. 动力工程, 2007, 27(3): 458-462. |
Yao Y, Wang S R, Wang Q, et al. Research on utilization of bio-oil as a substitute for fuel-oils for power generation purposes[J]. Journal of Power Engineering, 2007, 27(3): 458-462. | |
10 | Vispute T P, Zhang H Y, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils[J]. Science, 2010, 330(6008): 1222-1227. |
11 | Han Y L, Gholizadeh M, Tran C C, et al. Hydrotreatment of pyrolysis bio-oil: a review[J]. Fuel Processing Technology, 2019, 195: 106140. |
12 | Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chemical Reviews, 2006, 106(9): 4044-4098. |
13 | 周华, 栗振华, 孔祥贵, 等. 生物质平台化合物电催化制备高值燃料与化学品研究进展[J]. 高等学校化学学报, 2020, 41(7): 1449-1460. |
Zhou H, Li Z H, Kong X G, et al. Recent progress in electrochemical catalytic conversion of biomass platform molecules into high-value added fuels and chemicals[J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1449-1460. | |
14 | Lucas F W S, Grim R G, Tacey S A, et al. Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application[J]. ACS Energy Letters, 2021, 67: 1205-1270. |
15 | Tu Q S, Parvatker A, Garedew M, et al. Electrocatalysis for chemical and fuel production: investigating climate change mitigation potential and economic feasibility[J]. Environmental Science & Technology, 2021, 55(5): 3240-3249. |
16 | Li K, Sun Y J. Electrocatalytic upgrading of biomass-derived intermediate compounds to value-added products[J]. Chemistry - A European Journal, 2018, 24(69): 18258-18270. |
17 | Orella M J, Román-Leshkov Y, Brushett F R. Emerging opportunities for electrochemical processing to enable sustainable chemical manufacturing[J]. Current Opinion in Chemical Engineering, 2018, 20: 159-167. |
18 | Carneiro J, Nikolla E. Electrochemical conversion of biomass-based oxygenated compounds[J]. Annual Review of Chemical and Biomolecular Engineering, 2019, 10(1): 85-104. |
19 | Garedew M, Lin F, Song B, et al. Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production[J]. ChemSusChem, 2020, 13(17): 4214-4237. |
20 | Chen G Y, Liang L, Li N, et al. Upgrading of bio-oil model compounds and bio-crude into biofuel by electrocatalysis: a review[J]. ChemSusChem, 2021, 14(4): 1037-1052. |
21 | Lister T E, Diaz L A, Lilga M A, et al. Low-temperature electrochemical upgrading of bio-oils using polymer electrolyte membranes[J]. Energy & Fuels, 2018, 32(5): 5944-5950. |
22 | Li Z L, Kelkar S, Raycraft L, et al. A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth[J]. Green Chemistry, 2014, 16(2): 844-852. |
23 | 王树荣, 骆仲泱, 谭洪, 等. 生物质热裂解生物油特性的分析研究[J]. 工程热物理学报, 2004, 25(6): 1049-1052. |
Wang S R, Luo Z Y, Tan H, et al. The analyses of characteristics of bio-oil produced from biomass by flash pyrolysis[J]. Journal of Engineering Thermophysics, 2004, 25(6): 1049-1052. | |
24 | Branca C, Giudicianni P, di Blasi C. GC/MS characterization of liquids generated from low-temperature pyrolysis of wood[J]. Industrial & Engineering Chemistry Research, 2003, 42(14): 3190-3202. |
25 | 朱锡锋, 陆强, 郑冀鲁, 等. 生物质热解与生物油的特性研究[J]. 太阳能学报, 2006, 27(12): 1285-1289. |
Zhu X F, Lu Q, Zheng J L, et al. Research on biomass pyrolysis and bio-oil characteristics[J]. Acta Energiae Solaris Sinica, 2006, 27(12): 1285-1289. | |
26 | 桑小义, 李会峰, 李明丰, 等. 生物质热解油的特性及精制[J]. 石油学报(石油加工), 2015, 31(1): 178-187. |
Sang X Y, Li H F, Li M F, et al. The properties and upgrading of bio-oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(1): 178-187. | |
27 | Pinheiro Pires A P, Arauzo J, Fonts I, et al. Challenges and opportunities for bio-oil refining: a review[J]. Energy & Fuels, 2019, 33(6): 4683-4720. |
28 | Oasmaa A, Elliott D C, Korhonen J. Acidity of biomass fast pyrolysis bio-oils[J]. Energy & Fuels, 2010, 24(12): 6548-6554. |
29 | Stankovikj F, McDonald A G, Helms G L, et al. Quantification of bio-oil functional groups and evidences of the presence of pyrolytic humins[J]. Energy & Fuels, 2016, 30(8): 6505-6524. |
30 | Basu P. Production of synthetic fuels and chemicals from biomass[M]//Biomass Gasification, Pyrolysis and Torrefaction. Amsterdam: Elsevier, 2018: 415-443. |
31 | Bridgwater A V, Czernik S, Diebold J. Fast pyrolysis of biomass: a handbook, vol. 2[EB/OL]. 2008. |
32 | Wang Y, Mourant D, Hu X, et al. Formation of coke during the pyrolysis of bio-oil[J]. Fuel, 2013, 108: 439-444. |
33 | Hu X, Wang Y, Mourant D, et al. Polymerization on heating up of bio-oil: a model compound study[J]. AIChE Journal, 2013, 59(3): 888-900. |
34 | Xiong Z, Chen Y J, Azis M M, et al. Roles of furfural during the thermal treatment of bio-oil at low temperatures[J]. Journal of Energy Chemistry, 2020, 50: 85-95. |
35 | Zhang Q, Chang J, Wang T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
36 | Ruddy D A, Schaidle J A, Ferrell J R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16(2): 454-490. |
37 | Hansen S, Mirkouei A, Diaz L A. A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 118: 109548. |
38 | Gollakota A R K, Reddy M, Subramanyam M D, et al. A review on the upgradation techniques of pyrolysis oil[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1543-1568. |
39 | Srifa A, Chaiwat W, Pitakjakpipop P, et al. Advances in bio-oil production and upgrading technologies[M]//Sustainable Bioenergy. Amsterdam: Elsevier, 2019: 167-198. |
40 | 丁冉冉, 吴玉龙, 陈宇, 等. 藻类液化生物油的催化脱氧改质进展[J]. 化工学报, 2014, 65(7): 2685-2695. |
Ding R R, Wu Y L, Chen Y, et al. Recent advances on catalytic deoxygenation upgrading of liquefaction microalgae bio-oil[J]. CIESC Journal, 2014, 65(7): 2685-2695. | |
41 | 颜蓓蓓, 王建, 刘彬, 等. 生物油金属水热原位加氢提质技术研究进展[J]. 化工学报, 2021, 72(4): 1783-1795. |
Yan B B, Wang J, Liu B, et al. Research progress of bio-oil metal hydrothermal in situ hydrogenation technology[J]. CIESC Journal, 2021, 72(4): 1783-1795. | |
42 | 孙晓英, 刘祥, 赵雪冰, 等. 航空生物燃料制备技术及其应用研究进展[J]. 生物工程学报, 2013, 29(3): 285-298. |
Sun X Y, Liu X, Zhao X B, et al. Progress in synthesis technologies and application of aviation biofuels[J]. Chinese Journal of Biotechnology, 2013, 29(3): 285-298. | |
43 | 马文超, 陈娇娇, 王铁军, 等. 生物油模型化合物催化裂解机理[J]. 农业工程学报, 2013, 29(9): 207-213. |
Ma W C, Chen J J, Wang T J, et al. Catalytic cracking mechanism of bio-oil model compounds[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(9): 207-213. | |
44 | Elliott D C. Historical developments in hydroprocessing bio-oils[J]. Energy & Fuels, 2007, 21(3): 1792-1815. |
45 | Zacher A H, Olarte M V, Santosa D M, et al. A review and perspective of recent bio-oil hydrotreating research[J]. Green Chemistry, 2014, 16(2): 491-515. |
46 | Shamsul N S, Kamarudin S K, Rahman N A. Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 538-549. |
47 | Shi Y C, Xing E H, Wu K J, et al. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts[J]. Catalysis Science & Technology, 2017, 7(12): 2385-2415. |
48 | Hu X, Gunawan R, Mourant D, et al. Upgrading of bio-oil via acid-catalyzed reactions in alcohols—a mini review[J]. Fuel Processing Technology, 2017, 155: 2-19. |
49 | Ciddor L, Bennett J A, Hunns J A, et al. Catalytic upgrading of bio-oils by esterification[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(5): 780-795. |
50 | Wen D S, Jiang H, Zhang K. Supercritical fluids technology for clean biofuel production[J]. Progress in Natural Science, 2009, 19(3): 273-284. |
51 | Omar S, Alsamaq S, Yang Y, et al. Production of renewable fuels by blending bio-oil with alcohols and upgrading under supercritical conditions[J]. Frontiers of Chemical Science and Engineering, 2019, 13(4): 702-717. |
52 | Leng L J, Li H, Yuan X Z, et al. Bio-oil upgrading by emulsification/microemulsification: a review[J]. Energy, 2018, 161: 214-232. |
53 | Trane R, Dahl S, Skjøth-Rasmussen M S, et al. Catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6447-6472. |
54 | 蒋文艳, 魏光涛, 刘子涵, 等. 催化转移加氢及其强化研究进展[J]. 现代化工, 2019, 39(3): 26-30. |
Jiang W Y, Wei G T, Liu Z H, et al. Research progress in catalytic transfer hydrogenation and its intensification[J]. Modern Chemical Industry, 2019, 39(3): 26-30. | |
55 | 孟繁星, 遇治权, 景文文, 等. 磷酸铈对磷化镍催化苯酚转移加氢的促进作用[J]. 高等学校化学学报, 2020, 41(4): 765-771. |
Meng F X, Yu Z Q, Jing W W, et al. Promoting effect of cerous phosphate on the phenol catalytic transfer hydrogenation over nickel phosphide catalyst[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 765-771. | |
56 | 种瑞峰, 吴文鹏, 张凌, 等. 基于二氧化钛光催化剂生物质转化制备氢气和化学品的研究进展[J]. 化学研究, 2015, 26(1): 8-18. |
Chong R F, Wu W P, Zhang L, et al. Research progress of hydrogen production and chemicals through biomass conversion under photocatalysis by titanium dioxide photocatalyst[J]. Chemical Research, 2015, 26(1): 8-18. | |
57 | Jaswal R, Shende A, Nan W, et al. Hydrothermal liquefaction and photocatalytic reforming of pinewood (pinus ponderosa)-derived acid hydrolysis residue for hydrogen and bio-oil production[J]. Energy & Fuels, 2019, 33(7): 6454-6462. |
58 | Lam C H, Das S, Erickson N C, et al. Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading[J]. Sustainable Energy & Fuels, 2017, 1(2): 258-266. |
59 | Black S, Ferrell J R. Determination of carbonyl groups in pyrolysis bio-oils using potentiometric titration: review and comparison of methods[J]. Energy & Fuels, 2016, 30(2): 1071-1077. |
60 | Cantu D, Padmaperuma A B, Nguyen M T, et al. A combined experimental and theoretical study on the activity and selectivity of the electrocatalytic hydrogenation of aldehydes[J]. ACS Catalysis, 2018, 8(8): 7645-7658. |
61 | Carroll K J, Burger T, Langenegger L, et al. Electrocatalytic hydrogenation of oxygenates using earth-abundant transition-metal nanoparticles under mild conditions[J]. ChemSusChem, 2016, 9(15): 1904-1910. |
62 | Green S K, Lee J, Kim H J, et al. The electrocatalytic hydrogenation of furanic compounds in a continuous electrocatalytic membrane reactor[J]. Green Chemistry, 2013, 15(7): 1869-1879. |
63 | Andrews E, Lopez-Ruiz J A, Egbert J D, et al. Performance of base and noble metals for electrocatalytic hydrogenation of bio-oil-derived oxygenated compounds[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(11): 4407-4418. |
64 | Lopez-Ruiz J A, Andrews E, Akhade S A, et al. Understanding the role of metal and molecular structure on the electrocatalytic hydrogenation of oxygenated organic compounds[J]. ACS Catalysis, 2019, 9(11): 9964-9972. |
65 | Cirtiu C M, Hassani H O, Bouchard N A, et al. Modification of the surface adsorption properties of alumina-supported Pd catalysts for the electrocatalytic hydrogenation of phenol[J]. Langmuir, 2006, 22(14): 6414-6421. |
66 | Jollet V, Gissane C, Schlaf M. Optimization of the neutralization of Red Mud by pyrolysis bio-oil using a design of experiments approach[J]. Energy & Environmental Science, 2014, 7(3): 1125-1133. |
67 | Nilges P, dos Santos T R, Harnisch F, et al. Electrochemistry for biofuel generation: electrochemical conversion of levulinic acid to octane[J]. Energy & Environmental Science, 2012, 5(1): 5231-5235. |
68 | Xin L, Zhang Z Y, Qi J, et al. Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone[J]. ChemSusChem, 2013, 6(4): 674-686. |
69 | Park L K E, Liu J J, Yiacoumi S, et al. Contribution of acidic components to the total acid number (TAN) of bio-oil[J]. Fuel, 2017, 200: 171-181. |
70 | Kwon Y, Koper M T M. Electrocatalytic hydrogenation and deoxygenation of glucose on solid metal electrodes[J]. ChemSusChem, 2013, 6(3): 455-462. |
71 | Mariscal R, Maireles-Torres P, Ojeda M, et al. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energy & Environmental Science, 2016, 9(4): 1144-1189. |
72 | Li X D, Jia P, Wang T F. Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals[J]. ACS Catalysis, 2016, 6(11): 7621-7640. |
73 | Du L, Shao Y Y, Sun J M, et al. Electrocatalytic valorisation of biomass derived chemicals[J]. Catalysis Science & Technology, 2018, 8(13): 3216-3232. |
74 | Lyu G J, Wu S B, Zhang H D. Estimation and comparison of bio-oil components from different pyrolysis conditions[J]. Frontiers in Energy Research, 2015, 3: 1-28. |
75 | Long Y, Yu Y, Chua Y W, et al. Acid-catalysed cellulose pyrolysis at low temperatures[J]. Fuel, 2017, 193: 460-466. |
76 | Jung S, Biddinger E J. Electrocatalytic hydrogenation and hydrogenolysis of furfural and the impact of homogeneous side reactions of furanic compounds in acidic electrolytes[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6500-6508. |
77 | Nilges P, Schröder U. Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals[J]. Energy & Environmental Science, 2013, 6(10): 2925-2931. |
78 | Chadderdon X H, Chadderdon D J, Matthiesen J E, et al. Mechanisms of furfural reduction on metal electrodes: distinguishing pathways for selective hydrogenation of bioderived oxygenates[J]. Journal of the American Chemical Society, 2017, 139(40): 14120-14128. |
79 | Chen S, Wojcieszak R, Dumeignil F, et al. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chemical Reviews, 2018, 118(22): 11023-11117. |
80 | Li Z L, Kelkar S, Lam C H, et al. Aqueous electrocatalytic hydrogenation of furfural using a sacrificial anode[J]. Electrochimica Acta, 2012, 64: 87-93. |
81 | May A S, Biddinger E J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions[J]. ACS Catalysis, 2020, 10(5): 3212-3221. |
82 | Kwon Y, de Jong E, Raoufmoghaddam S, et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose[J]. ChemSusChem, 2013, 6(9): 1659-1667. |
83 | Kwon Y, Birdja Y Y, Raoufmoghaddam S, et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in acidic solution[J]. ChemSusChem, 2015, 8(10): 1745-1751. |
84 | Garedew M, Lam C H, Petitjean L, et al. Electrochemical upgrading of depolymerized lignin: a review of model compound studies[J]. Green Chemistry, 2021, 23(8): 2868-2899. |
85 | Zhao B, Guo Q X, Fu Y. Electrocatalytic hydrogenation of lignin-derived phenol into alkanes by using platinum supported on graphite[J]. Electrochemistry, 2014, 82(11): 954-959. |
86 | Liu W, You W Q, Gong Y T, et al. High-efficiency electrochemical hydrodeoxygenation of bio-phenols to hydrocarbon fuels by a superacid-noble metal particle dual-catalyst system[J]. Energy & Environmental Science, 2020, 13(3): 917-927. |
87 | Song Y, Chia S H, Sanyal U, et al. Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers[J]. Journal of Catalysis, 2016, 344: 263-272. |
88 | Sanyal U, Lopez-Ruiz J, Padmaperuma A B, et al. Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase[J]. Organic Process Research & Development, 2018, 22(12): 1590-1598. |
89 | Garedew M, Young-Farhat D, Bhatia S, et al. Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth[J]. Sustainable Energy & Fuels, 2020, 4(3): 1340-1350. |
90 | Li Z L, Garedew M, Lam C H, et al. Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth[J]. Green Chemistry, 2012, 14(9): 2540-2549. |
91 | Garedew M, Young-Farhat D, Jackson J E, et al. Electrocatalytic upgrading of phenolic compounds observed after lignin pyrolysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8375-8386. |
92 | Mahdavi B, Lafrance A, Martel A, et al. Electrocatalytic hydrogenolysis of lignin model dimers at Raney nickel electrodes[J]. Journal of Applied Electrochemistry, 1997, 27(5): 605-611. |
93 | Cyr A, Chiltz F, Jeanson P, et al. Electrocatalytic hydrogenation of lignin models at Raney nickel and palladium-based electrodes[J]. Canadian Journal of Chemistry, 2000, 78(3): 307-315. |
94 | Lam C H, Lowe C B, Li Z L, et al. Electrocatalytic upgrading of model lignin monomers with earth abundant metal electrodes[J]. Green Chemistry, 2015, 17(1): 601-609. |
95 | Laplante F, Brossard L, Ménard H. Considerations about phenol electrohydrogenation on electrodes made with reticulated vitreous carbon cathode[J]. Canadian Journal of Chemistry, 2003, 81(3): 258-264. |
96 | Zhou Y L, Gao Y J, Zhong X, et al. Electrocatalytic upgrading of lignin-derived bio-oil based on surface-engineered PtNiB nanostructure[J]. Advanced Functional Materials, 2019, 29(10): 1807651. |
97 | Shao D, Chu W, Li X L, et al. Electrochemical oxidation of guaiacol to increase its biodegradability or just remove COD in terms of anodes and electrolytes[J]. RSC Advances, 2016, 6(6): 4858-4866. |
98 | Song Y, Gutiérrez O Y, Herranz J, et al. Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions[J]. Applied Catalysis B: Environmental, 2016, 182: 236-246. |
99 | Song Y, Sanyal U, Pangotra D, et al. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals[J]. Journal of Catalysis, 2018, 359: 68-75. |
100 | Zhang B, Zhang J, Zhong Z P. Low-energy mild electrocatalytic hydrogenation of bio-oil using ruthenium anchored in ordered mesoporous carbon[J]. ACS Applied Energy Materials, 2018, 1(12): 6758-6763. |
101 | Deng W, Xu K, Xiong Z, et al. Evolution of aromatic structures during the low-temperature electrochemical upgrading of bio-oil[J]. Energy & Fuels, 2019, 33(11): 11292-11301. |
102 | Santana D S, Melo G O, Lima M V F, et al. Electrocatalytic hydrogenation of organic compounds using a nickel sacrificial anode[J]. Journal of Electroanalytical Chemistry, 2004, 569(1): 71-78. |
103 | Yan N, Zhao C, Luo C, et al. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst[J]. Journal of the American Chemical Society, 2006, 128(27): 8714-8715. |
104 | Sherif E M, Almajid A A, Bairamov A K, et al. A comparative study on the corrosion of monel-400 in aerated and deaerated Arabian Gulf water and 3.5% sodium chloride solutions[J]. International Journal of Electrochemical Science, 2012, 7(4): 2796-2810. |
105 | Song Q, Wang F, Cai J Y, et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6(3): 994-1007. |
106 | Xu J, Sheng G P, Luo H W, et al. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell[J]. Water Research, 2012, 46(6): 1817-1824. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[3] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[4] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[5] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[8] | Xiqing ZHANG, Yanting WANG, Yanhong XU, Shuling CHANG, Tingting SUN, Ding XUE, Lihong ZHANG. Effect of Mg content on isobutane dehydrogenation properties over nanosheets supported Pt-In catalysts [J]. CIESC Journal, 2023, 74(6): 2427-2435. |
[9] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[10] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[11] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[12] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[13] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[14] | Ruiqi LIU, Xitong ZHOU, Yue ZHANG, Ying HE, Jing GAO, Li MA. The construction and application of biosensor based on gold nanoparticles loaded SiO2-nanoflowers [J]. CIESC Journal, 2023, 74(3): 1247-1259. |
[15] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||