CIESC Journal ›› 2021, Vol. 72 ›› Issue (1): 205-215.DOI: 10.11949/0438-1157.20201075
• Reviews and monographs • Previous Articles Next Articles
CHENG Yaqi1(),WU Jing1,LIU Liming2,SONG Wei1()
Received:
2020-07-31
Revised:
2020-09-21
Online:
2021-01-05
Published:
2021-01-05
Contact:
SONG Wei
通讯作者:
宋伟
作者简介:
成雅琪(1996—),女,硕士研究生,基金资助:
CLC Number:
CHENG Yaqi, WU Jing, LIU Liming, SONG Wei. Advances in the synthesis of chiral amines by biocatalytic C—N bond formation[J]. CIESC Journal, 2021, 72(1): 205-215.
成雅琪, 吴静, 刘立明, 宋伟. 生物催化C—N成键反应合成手性胺的研究进展[J]. 化工学报, 2021, 72(1): 205-215.
Add to citation manager EndNote|Ris|BibTeX
1 | Ghislieri D, Turner N J. Biocatalytic approaches to the synthesis of enantiomerically pure chiral amines[J]. Topics in Catalysis, 2014, 57(5): 284-300. |
2 | Grogan G. Synthesis of chiral amines using redox biocatalysis[J]. Current Opinion in Chemical Biology, 2018, 43: 15-22. |
3 | Hallen A, Cooper A J L, Jamie J F, et al. Mammalian forebrain ketimine reductase identified as mu-crystallin; potential regulation by thyroid hormones[J]. Journal of Neurochemistry, 2011, 118(3): 379-387. |
4 | Hallen A, Cooper A J L, Smith J R, et al. Ketimine reductase/CRYM catalyzes reductive alkylamination of alpha-keto acids, confirming its function as an imine reductase[J]. Amino Acids, 2015, 47(11): 2457-2461. |
5 | Hyslop J F, Lovelock S L, Sutton P W, et al. Biocatalytic synthesis of chiral N-functionalized amino acids[J]. Angewandte Chemie-International Edition, 2018, 57(42): 13821-13824. |
6 | Mitsukura K, Kuramoto T, Yoshida T, et al. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: purification, characterization, gene cloning, and expression[J]. Applied Microbiology and Biotechnology, 2013, 97(18): 8079-8086. |
7 | Maugeri Z, Rother D. Application of imine reductases (IREDs) in micro-aqueous reaction systems[J]. Advanced Synthesis & Catalysis, 2016, 358(17): 2745-2750. |
8 | Wetzl D, Gand M, Ross A, et al. Asymmetric reductive amination of ketones catalyzed by imine reductases[J]. ChemCatChem, 2016, 8(12): 2023-2026. |
9 | Aleku G A, France S P, Man H, et al. A reductive aminase from Aspergillus oryzae[J]. Nature Chemistry, 2017, 9(10): 961-969. |
10 | Matzel P, Wenske S, Merdivan S, et al. Synthesis of beta-chiral amines by dynamic kinetic resolution of alpha-branched aldehydes applying imine reductases[J]. ChemCatChem, 2019, 11(17): 4281-4285. |
11 | Van Os N, Smits S H J, Schmitt L, et al. Control of D-octopine formation in scallop adductor muscle as revealed through thermodynamic studies of octopine dehydrogenase[J]. Journal of Experimental Biology, 2012, 215(9): 1515-1522. |
12 | Hyslop J F, Lovelock S L, Watson A J B, et al. N-Alkyl-alpha-amino acids in nature and their biocatalytic preparation[J]. Journal of Biotechnology, 2019, 293: 56-65. |
13 | Sharma M, Mangas-Sanchez J, Turner N J, et al. NAD(P)H-dependent dehydrogenases for the asymmetric reductive amination of ketones: structure, mechanism, evolution and application[J]. Advanced Synthesis & Catalysis, 2017, 359(12): 2011-2025. |
14 | Chen H, Moore J, Collier S J, et al. Engineered imine reductases and methods for the reductive amination of ketone and amine compounds: US9487760B2[P]. 2016-11-08. |
15 | Mindt M, Walter T, Kugler P, et al. Microbial engineering for production of N-functionalized amino acids and amines[J]. Biotechnology Journal, 2020, 15: 1900451. |
16 | Lin M C, Wagner C. Purification and characterization of N-methylalanine dehydrogenase[J]. The Journal of Biological Chemistry, 1975, 250(10): 3746-3751. |
17 | Mihara H, Muramatsu H, Kakutani R, et al. N-Methyl-L-amino acid dehydrogenase from Pseudomonas putida — a novel member of an unusual NAD(P)-dependent oxidoreductase superfamily[J]. FEBS Journal, 2005, 272(5): 1117-1123. |
18 | Mindt M, Risse J M, Gruss H, et al. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst[J]. Scientific Reports, 2018, 8(1):12895. |
19 | Jiang W, Xu C Z, Jiang S Z, et al. Establishing a mathematical equations and improving the production of L-tert-leucine by uniform design and regression analysis[J]. Applied Biochemistry and Biotechnology, 2017, 181(4): 1454-1464. |
20 | Liu W, Ma H, Luo J, et al. Efficient synthesis of L-tert-leucine through reductive amination using leucine dehydrogenase and formate dehydrogenase coexpressed in recombinant E. coli[J]. Biochemical Engineering Journal, 2014, 91: 204-209. |
21 | Chiriac M, Lupan I, Bucurenci N, et al. Stereoselective synthesis of L-N-15 amino acids with glucose dehydrogenase and galactose mutarotase as NADH regenerating system[J]. Journal of Labelled Compounds & Radiopharmaceuticals, 2008, 51(3/4): 171-174. |
22 | Abrahamson M J, Vazquez-Figueroa E, Woodall N B, et al. Development of an amine dehydrogenase for synthesis of chiral amines[J]. Angewandte Chemie-International Edition, 2012, 51(16): 3969-3972. |
23 | Luo W, Zhu J, Zhao Y Z, et al. Cloning and expression of a novel leucine dehydrogenase: characterization and L-tert-leucine production[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 186. |
24 | Qi Y, Yang T, Zhou J, et al. Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of L-norvaline from DL-norvaline[J]. Process Biochemistry, 2017, 55: 104-109. |
25 | Chen S, Engel P C. Efficient screening for new amino acid dehydrogenase activity: directed evolution of Bacillus sphaericus phenylalanine dehydrogenase towards activity with an unsaturated non-natural amino acid[J]. Journal of Biotechnology, 2009, 142(2): 127-134. |
26 | Abrahamson M J, Wong J W, Bommarius A S. The evolution of an amine dehydrogenase biocatalyst for the asymmetric production of chiral amines[J]. Advanced Synthesis & Catalysis, 2013, 355(9): 1780-1786. |
27 | Ye L J, Toh H H, Yang Y, et al. Engineering of amine dehydrogenase for asymmetric reductive amination of ketone by evolving Rhodococcus phenylalanine dehydrogenase[J]. ACS Catalysis, 2015, 5(2): 1119-1122. |
28 | Khorsand F, Murphy C D, Whitehead A J, et al. Biocatalytic stereoinversion of D-para-bromophenylalanine in a one-pot three-enzyme reaction[J]. Green Chemistry, 2017, 19(2): 503-510. |
29 | Heydari M, Ohshima T, Nunoura-Kominato N, et al. Highly stable L-lysine 6-dehydrogenase from the thermophile Geobacillus stearothemophilus isolated from a Japanese hot spring: characterization, gene cloning and sequencing, and expression[J]. Applied and Environmental Microbiology, 2004, 70(2): 937-942. |
30 | Yoneda K, Fukuda J, Sakuraba H, et al. First crystal structure of L-lysine 6-dehydrogenase as an NAD-dependent amine dehydrogenase[J]. Journal of Biological Chemistry, 2010, 285(11): 8444-8453. |
31 | Zabriskie T M, Jackson M D. Lysine biosynthesis and metabolism in fungi[J]. Natural Product Reports, 2000, 17(1): 85-97. |
32 | Tseliou V, Knaus T, Masman M F, et al. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from epsilon-deaminating L-lysine dehydrogenase[J]. Nature Communications, 2019, 10(1): 3717. |
33 | Akita H, Hayashi J, Sakuraba H, et al. Artificial thermostable D-amino acid dehydrogenase: creation and application[J]. Frontiers in Microbiology, 2018, 9:1760. |
34 | Vedha-Peters K, Gunawardana M, Rozzell J D, et al. Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids[J]. Journal of the American Chemical Society, 2006, 128(33): 10923-10929. |
35 | Gao X, Zhang Z, Zhang Y, et al. A newly determined member of the meso-diaminopimelate dehydrogenase family with a broad substrate spectrum[J]. Applied and Environmental Microbiology, 2017, 83(11): e00476-17. |
36 | Gao X Z, Ma Q Y, Chen M L, et al. Insight into the highly conserved and differentiated co-factor binding sites of meso-diaminopimelate dehydrogenase StDAPDH[J]. Journal of Chemical Information and Modeling, 2019, 59(5): 2331-2338. |
37 | Weise N J, Parmeggiani F, Ahmed S T, et al. Discovery and investigation of mutase-like activity in a phenylalanine ammonia lyase from Anabaena variabilis[J]. Topics in Catalysis, 2018, 61(3/4): 288-295. |
38 | Gubica T, Palka K, Szeleszczuk L, et al. Enhanced enzymatic activity of phenylalanine dehydrogenase caused by cyclodextrins[J]. Journal of Molecular Catalysis B-Enzymatic, 2015, 118: 89-94 |
39 | Yue H Y, Yuan Q P, Wang W C. Enhancement of L-phenylalanine production by beta-cyclodextrin[J]. Journal of Food Engineering, 2007, 79(3): 878-884. |
40 | Lovelock S L, Lloyd R C, Turner N J, et al. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO- cofactor independent pathway[J]. Angewandte Chemie-International Edition, 2014, 53(18): 4652-4656. |
41 | Parmeggiani F, Ahmed S T, Weise N J, et al. Telescopic one-pot condensation-hydroamination strategy for the synthesis of optically pure L-phenylalanines from benzaldehydes[J]. Tetrahedron, 2016, 72(46): 7256-7262. |
42 | Ahmed S T, Parmeggiani F, Weise N J, et al. Synthesis of enantiomerically pure ring-substituted L-pyridylalanines by biocatalytic hydroamination[J]. Organic Letters, 2016, 18(21): 5468-5471. |
43 | Zhu L B, Yang J, Feng G Q, et al. Investigation into isomerization reaction of phenylalanine aminomutase from Pantoea agglomerans[J]. Enzyme and Microbial Technology, 2020, 132:109428. |
44 | Szymanski W, Wu B, Weiner B, et al. Phenylalanine aminomutase-catalyzed addition of ammonia to substituted cinnamic acids: a route to enantiopure alpha- and beta-amino acids[J]. Journal of Organic Chemistry, 2009, 74(23): 9152-9157. |
45 | Cooke H A, Bruner S D. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites[J]. Biopolymers, 2010, 93(9): 802-810. |
46 | Feng L, Wanninayake U, Strom S, et al. Mechanistic, mutational, and structural evaluation of a taxus phenylalanine aminomutase[J]. Biochemistry, 2011, 50(14): 2919-2930. |
47 | Weise N J, Parmeggiani F, Ahmed S T, et al. The bacterial ammonia lyase EncP: a tunable biocatalyst for the synthesis of unnatural amino acids[J]. Journal of the American Chemical Society, 2015, 137(40): 12977-12983. |
48 | Weiner B, Poelarends G J, Janssen D B, et al. Biocatalytic enantioselective synthesis of N-substituted aspartic acids by aspartate ammonia lyase[J]. Chemistry-A European Journal, 2008, 14(32): 10094-10100. |
49 | Cardenas-Fernandez M, Lopez C, Alvaro G, et al. Immobilized L-aspartate ammonia-lyase from Bacillus sp.YM55-1 as biocatalyst for highly concentrated L-aspartate synthesis[J]. Bioprocess and Biosystems Engineering, 2012, 35(8): 1437-1444. |
50 | Wang L J, Kong X D, Zhang H Y, et al. Enhancement of the activity of L-aspartase from Escherichia coli W by directed evolution[J]. Biochemical and Biophysical Research Communications, 2000, 276(1): 346-349. |
51 | Vogel A, Schmiedel R, Hofmann U, et al. Converting aspartase into a beta-amino acid lyase by cluster screening[J]. ChemCatChem, 2014, 6(4): 965-968. |
52 | Li R, Wijma H J, Song L, et al. Computational redesign of enzymes for regio- and enantioselective hydroamination[J]. Nature Chemical Biology, 2018, 14(7): 664-670. |
53 | Asano Y, Kato Y. Occurrence of 3-methylaspartate ammonia-lyase in facultative anaerobes and their application to synthesis of 3-substituted (S)-aspartic acids[J]. Bioscience Biotechnology and Biochemistry, 1994, 8(1): 223-224. |
54 | Veetil V P, Raj H, de Villiers J, et al. Enantioselective synthesis of N-substituted aspartic acids using an engineered variant of methylaspartate ammonia lyase[J]. ChemCatChem, 2013, 5(6): 1325-1327. |
55 | Raj H, Szymanski W, de Villiers J, et al. Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids[J]. Nature Chemistry, 2012, 4(6): 478-484. |
56 | Raj H, Szymanski W, de Villiers J, et al. Kinetic resolution and stereoselective synthesis of 3-substituted aspartic acids by using engineered methylaspartate ammonia lyases[J]. Chemistry-A European Journal, 2013, 19(34): 11148-11152. |
57 | Ni Z F, Zeng Y J, Xu P, et al. Characterization of a novel methylaspartate ammonia lyase from E. coil O157:H7for efficient asymmetric synthesis of unnatural amino acids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(1): 329-334. |
58 | Fu H G, Zhang J L, Saifuddin M, et al. Chemoenzymatic asymmetric synthesis of the metallo-beta-lactamase inhibitor aspergillomarasmine A and related aminocarboxylic acids[J]. Nature Catalysis, 2018, 1(3): 186-191. |
59 | Hwang B Y, Cho B K, Yun H, et al. Revisit of aminotransferase in the genomic era and its application to biocatalysis[J]. Journal of Molecular Catalysis B-Enzymatic, 2005, 37(1-6): 47-55. |
60 | Luo C H, Lin Q M, Lin S Y, et al. Cosynthesis of L-homophenylalanine and 2-phenylethanol by recombinant Saccharomyces cerevisiae expressing aspartate aminotransferase from Escherichia coli BL21(DE3) [J]. Journal of Bioscience and Bioengineering, 2017, 123(1): 1-7. |
61 | Cho B K, Seo J H, Kang T W, et al. Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase[J]. Biotechnology and Bioengineering, 2003, 83(2): 226-234. |
62 | Zhu L, Tao R, Wang Y, et al. Removal of L-alanine from the production of L-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase[J]. Applied Microbiology and Biotechnology, 2011, 90(3): 903-910. |
63 | Meiwes J, Schudok M, Kretzschmar G. Asymmetric synthesis of L-thienylalanines[J]. Tetrahedron-Asymmetry, 1997, 8(4): 527-536. |
64 | Cho B K, Park H Y, Seo J H, et al. Enzymatic resolution for the preparation of enantiomerically enriched D-beta-heterocyclic alanine derivatives using Escherichia coli aromatic L-amino acid transaminase[J]. Biotechnology and Bioengineering, 2004, 88(4): 512-519. |
65 | Zheng X X, Cui Y L, Li T, et al. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids[J]. Applied Microbiology and Biotechnology, 2019, 103(19): 8051-8062. |
66 | Gao X, Ma Q, Zhu H. Distribution, industrial applications, and enzymatic synthesis of D-amino acids[J]. Applied Microbiology and Biotechnology, 2015, 9(8): 3341-3349. |
67 | Kobayashi J, Shimizu Y, Mutaguchi Y, et al. Characterization of D-amino acid aminotransferase from Lactobacillus salivarius[J]. Journal of Molecular Catalysis B-Enzymatic, 2013, 94: 15-22. |
68 | Walton C J W, Parmeggiani F, Barber J E B, et al. Engineered aminotransferase for the production of D-phenylalanine derivatives using biocatalytic cascades[J]. ChemCatChem, 2018, 10(2): 470-474. |
69 | Fuchs M, Farnberger J E, Kroutil W. The industrial age of biocatalytic transamination[J]. European Journal of Organic Chemistry, 2015, (32): 6965-6982. |
70 | Bea H S, Lee S H, Yun H. Asymmetric synthesis of (R)-3-fluoroalanine from 3-fluoropyruvate using omega-transaminase[J]. Biotechnology and Bioprocess Engineering, 2011, 16(2): 291-296. |
71 | Kim G H, Jeon H, Khobragade T P, et al. Enzymatic synthesis of sitagliptin intermediate using a novel omega-transaminase[J]. Enzyme and Microbial Technology, 2019, 120: 52-60. |
72 | Shon M, Shanmugavel R, Shin G, et al. Enzymatic synthesis of chiral gamma-amino acids using omega-transaminase[J].Chemical Communications, 2014, 50(84): 12680-12683. |
73 | Mathew S, Nadarajan S P, Chung T, et al. Biochemical characterization of thermostable omega-transaminase from Sphaerobacter thermophilus and its application for producing aromatic beta- and gamma-amino acids[J]. Enzyme and Microbial Technology, 2016, 87/88: 52-60. |
[1] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[2] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[3] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[4] | Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids [J]. CIESC Journal, 2023, 74(9): 3716-3730. |
[5] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[6] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[7] | Lingding MENG, Ruqing CHONG, Feixue SUN, Zihui MENG, Wenfang LIU. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica [J]. CIESC Journal, 2023, 74(8): 3472-3484. |
[8] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[9] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[10] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[11] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
[12] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[13] | Qiyu ZHANG, Lijun GAO, Yuhang SU, Xiaobo MA, Yicheng WANG, Yating ZHANG, Chao HU. Recent advances in carbon-based catalysts for electrochemical reduction of carbon dioxide [J]. CIESC Journal, 2023, 74(7): 2753-2772. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||