CIESC Journal ›› 2021, Vol. 72 ›› Issue (7): 3686-3695.DOI: 10.11949/0438-1157.20210033
• Catalysis, kinetics and reactors • Previous Articles Next Articles
WANG Jiexiang1,2(),LI Hongguo2,YE Songshou1,ZHENG Jinbao1(),CHEN Binghui1
Received:
2021-01-08
Revised:
2021-05-13
Online:
2021-07-05
Published:
2021-07-05
Contact:
ZHENG Jinbao
王结祥1,2(),李洪国2,叶松寿1,郑进保1(),陈秉辉1
通讯作者:
郑进保
作者简介:
王结祥(1985—),男,博士,基金资助:
CLC Number:
WANG Jiexiang, LI Hongguo, YE Songshou, ZHENG Jinbao, CHEN Binghui. Halogen-rich zinc-adeninate framework construction and its catalytic performance on CO2 cycloaddition without cocatalyst[J]. CIESC Journal, 2021, 72(7): 3686-3695.
王结祥, 李洪国, 叶松寿, 郑进保, 陈秉辉. 卤素负载锌-腺嘌呤骨架材料的构建及无助剂催化CO2环加成反应[J]. 化工学报, 2021, 72(7): 3686-3695.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Zn-Ad-Int-DMF prepared by different zinc salts and their catalytic activity comparison. Herein, NO3-+KI meant Zn(NO3)2-Ad-Int-DMF with KI (20% MOF dosage) added [Reaction conditions: PO 30 ml, initial PCO2 4 MPa, catalyst dosage 0.5 g, KI 0.1 g (if added), T=100℃, t=12 h]
Fig.3 The morphology through microscope (a), structure comparison through PXRD for framework materials under different growth conditions (b) and X-ray single crystal refining for ZnI2-Ad-Int-DMF structure (c)
Fig.7 Catalytic activity comparison for different ZnX2-Ad-Int at different reaction temperature[Reaction conditions: PO 30 ml, initial PCO2 4 MPa, catalyst dosage 0.5g, t=24 h. In TON/TOF calculation process, I- was regarded as active site]
Fig.8 Recycling test for two kinds of ZnI2-Ad-Int and iodine capacity test for recycling catalyst through XRF[Reaction conditions: PO 30 ml, initialPCO2 4 MPa, catalyst dosage 0.5 g, t=24 h,T=140℃]
Sample | C/N ratio | Content/%(mass) | ||
---|---|---|---|---|
N | C | H | ||
ZnI2-Ad-Int-H2O | 1.86 | 28.38 | 52.74 | 6.29 |
ZnI2-Ad-Int-H2O-reacted | 2.06 | 25.84 | 53.08 | 5.88 |
ZnI2-Ad-Int-DMF | 1.63 | 24.93 | 40.66 | 4.84 |
ZnI2-Ad-Int-DMF-reacted | 1.82 | 23.61 | 42.97 | 4.01 |
Table 1 Elemental analysis of ZnI2-Ad-Int
Sample | C/N ratio | Content/%(mass) | ||
---|---|---|---|---|
N | C | H | ||
ZnI2-Ad-Int-H2O | 1.86 | 28.38 | 52.74 | 6.29 |
ZnI2-Ad-Int-H2O-reacted | 2.06 | 25.84 | 53.08 | 5.88 |
ZnI2-Ad-Int-DMF | 1.63 | 24.93 | 40.66 | 4.84 |
ZnI2-Ad-Int-DMF-reacted | 1.82 | 23.61 | 42.97 | 4.01 |
1 | 罗晓菲,支云飞,陕绍云, 等. 多孔材料在催化CO2与环氧化物环加成反应中的研究进展[J]. 精细化工,2020,37(12): 2415-2425. |
Luo X F, Zhi Y F, Shan S Y, et al. Research progress of porous materials in the cycloaddition of CO2 and epoxides[J]. Fine Chemicals, 2020, 37(12): 2415-2425. | |
2 | Müller P, Bucior B, Tuci G, et al. Computational screening, synthesis and testing of metal-organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates[J]. Molecular Systems Design & Engineering, 2019, 4(5): 1000-1013. |
3 | Dhakshinamoorthy A, Garcia H. Catalysis by metal nanoparticles embedded on metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(15): 5262-5284. |
4 | Liang J, Huang Y B, Cao R. Metal–organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates[J]. Coordination Chemistry Reviews, 2019, 378: 32-65. |
5 | Wu Y F, Song X H, Zhang J H, et al. Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies[J]. Chemical Engineering Science, 2019, 201: 288-297. |
6 | Wu X, Chen C T, Guo Z Y, et al. Metal- and halide-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. ACS Catalysis, 2019, 9(3): 1895-1906. |
7 | 罗荣昌,周贤太,杨智, 等. 均相体系中酸碱协同催化二氧化碳与环氧化物的环加成反应[J]. 化工学报, 2016, 67(1): 258-276. |
Luo R C, Zhou X T, Yang Z, et al. Acid-base synergistic effect promoted cycloaddition reaction from CO2 with epoxide in homogenous catalysis systems[J]. CIESC Journal, 2016, 67(1): 258-276. | |
8 | Shao P, Yi L C, Chen S M, et al. Metal-organic frameworks for electrochemical reduction of carbon dioxide: the role of metal centers[J]. Journal of Energy Chemistry, 2020, 40: 156-170. |
9 | Francke R, Schille B, Roemelt M. Homogeneously catalyzed electroreduction of carbon dioxide—methods, mechanisms, and catalysts[J]. Chemical Reviews, 2018, 118(9): 4631-4701. |
10 | 刘洋洋, 孙超,Singh M H, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4652-4662. |
Liu Y Y, Sun C, Singh M H, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4652-4662. | |
11 | 杨金曼, 朱兴旺, 周固礼, 等. MOFs诱导中空Co3O4/CdIn2S4合成及光催化CO2还原性能研究[J]. 化工学报, 2020, 71(6): 2780-2787. |
Yang J M, Zhu X W, Zhou G L, et al. Preparation of MOFs-derived hollow Co3O4/CdIn2S4 heterojunction with enhanced photocatalytic carbon dioxide reduction activity[J]. CIESC Journal, 2020, 71(6): 2780-2787. | |
12 | 任静, 谭玲, 赵宇飞, 等. 超薄二维材料光/电催化CO2还原的最新进展[J]. 化工学报, 2021, 72(1): 398-424. |
Ren J, Tan L, Zhao Y F, et al. Latest development of ultrathin two-dimensional materials for photocatalytic and electrocatalytic CO2 reduction[J]. CIESC Journal, 2021, 72(1): 398-424. | |
13 | Tortajada A, Juliá-Hernández F, Börjesson M, et al. Transition-metal-catalyzed carboxylation reactions with carbon dioxide[J]. Angewandte Chemie International Edition, 2018, 57(49): 15948-15982. |
14 | Luo R C, Liu X Y, Chen M, et al. Recent advances on imidazolium-functionalized organic cationic polymers for CO2 adsorption and simultaneous conversion into cyclic carbonates[J]. ChemSusChem, 2020, 13(16): 3945-3966. |
15 | Luo R C, Chen M, Liu X Y, et al. Recent advances in CO2 capture and simultaneous conversion into cyclic carbonates over porous organic polymers having accessible metal sites[J]. Journal of Materials Chemistry A, 2020, 8(36): 18408-18424. |
16 | MacGillivray L R. Metal-Organic Frameworks: Design and Application[M]. New York: John Wiley & Sons, Inc., 2010: 37-90. |
17 | Farrusseng D. Metal-Organic Frameworks: Applications from Catalysis to Gas Storage[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 191-210. |
18 | Song J L, Zhang B B, Jiang T, et al. Synthesis of cyclic carbonates and dimethyl carbonate using CO2 as a building block catalyzed by MOF-5/KI and MOF-5/KI/ K2CO3[J]. Frontiers of Chemistry in China, 2011, 6(1): 21–30. |
19 | Fei F, Dou Y, Hao X Y, et al. Construction of a porous Cu(Ⅱ)-coordinated framework for the catalytic properties of cycloaddition of carbon dioxide to epoxides[J]. Inorganic Chemistry Communications, 2019, 106: 22-26. |
20 | Miralda C M, Macias E E, Zhu M Q, et al. Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate[J]. ACS Catalysis, 2012, 2(1): 180-183. |
21 | Patel P, Parmar B, Pillai R S, et al. CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(Ⅱ) MOF as a synergistic heterogeneous catalyst[J]. Applied Catalysis A, General, 2020, 590: 117375-117382. |
22 | Hu L H, Chen L, Peng X, et al. Bifunctional metal-doped ZIF-8: a highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition[J]. Microporous and Mesoporous Materials, 2020, 299: 110123-110131. |
23 | 刘宁, 陈飞, 陶晟. 氢键给体促进有机催化的CO2与环氧化物的环加成反应[J]. 科学通报, 2020, 65(31): 3373–3388. |
Liu N, Chen F, Tao S. Hydrogen bond donors promoted organocatalyzed cycloaddition of CO2 with epoxides[J]. Chinese Science Bulletin, 2020, 65(31): 3373–3388. | |
24 | Hu T D, Jiang Y, Ding Y H. Computational screening of metal-substituted HKUST-1 catalysts for chemical fixation of carbon dioxide into epoxides[J]. Journal of Materials Chemistry A, 2019, 7(24): 14825-14834. |
25 | An J. Design, synthesis and characterization of porous materials made from nucleobases and metals[D]. Pittsburgh: University of Pittsburgh. 2008. |
26 | Vogiatzis K D, Mavrandonakis A, Klopper W, et al. Ab initio study of the interactions between CO2 and N-containing organic heterocycles[J]. ChemPhysChem, 2009, 10(2): 374-383. |
27 | Wang F, Tan Y X, Yang H, et al. A new approach towards tetrahedral imidazolate frameworks for high and selective CO2 uptake[J]. Chemical Communications, 2011, 47(20): 5828–5830. |
28 | Doskocil E J, Bordawekar S V, Kaye B G, et al. UV-vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide[J]. The Journal of Physical Chemistry B, 1999, 103(30): 6277-6282. |
29 | Xin B J, Zeng G, Gao L, et al. An unusual copper(Ⅰ) halide-based metal-organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties[J]. Dalton Transactions, 2013, 42(21): 7562-7570. |
30 | An J, Farha O K, Hupp J T, et al. Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework[J]. Nature Communications, 2012, 3: 604-610. |
[1] | Tianyang YANG, Huiming ZOU, Hui ZHOU, Chunlei WANG, Changqing TIAN. Experimental investigation on heating performance of vapor-injection CO2 heat pump for electric vehicles at -30℃ [J]. CIESC Journal, 2023, 74(S1): 272-279. |
[2] | Baomin DAI, Qilong WANG, Shengchun LIU, Jianing ZHANG, Xinhai LI, Fandi ZONG. Thermodynamic performance analysis of combined cooling and heating system based on combination of CO2 with the zeotropic refrigerant assisted subcooled [J]. CIESC Journal, 2023, 74(S1): 64-73. |
[3] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[4] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[7] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[8] | Can YANG, Xueqi SUN, Minghua SHANG, Jian ZHANG, Xiangping ZHANG, Shaojuan ZENG. Research status and prospect of CO2 absorption and separation by phase-change ionic liquid systems [J]. CIESC Journal, 2023, 74(4): 1419-1432. |
[9] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[10] | Feng WANG, Shunxin ZHANG, Fangbo YU, Ya LIU, Liejin GUO. Optimization strategy for producing carbon based fuels by photocatalytic CO2 reduction [J]. CIESC Journal, 2023, 74(1): 29-44. |
[11] | Xuqing WANG, Shenglin YAN, Litao ZHU, Xibao ZHANG, Zhenghong LUO. Research progress on the mass transfer process of CO2 absorption by amines in a packed column [J]. CIESC Journal, 2023, 74(1): 237-256. |
[12] | Muzi LI, Guowei JIA, Yanlong ZHAO, Xin ZHANG, Jianrong LI. The progress of metal-organic frameworks for non-CO2 greenhouse gases capture [J]. CIESC Journal, 2023, 74(1): 365-379. |
[13] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
[14] | Xin LI, Shaojuan ZENG, Kuilin PENG, Lei YUAN, Xiangping ZHANG. Research progress and tendency of CO2 electrocatalytic reduction to syngas [J]. CIESC Journal, 2023, 74(1): 313-329. |
[15] | Junhui LU, Junming LI. Study on condensation heat transfer characteristics of H2O-CO2,H2O-N2, H2O-He on horizontal tube under free convection [J]. CIESC Journal, 2022, 73(9): 3870-3879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||