CIESC Journal ›› 2022, Vol. 73 ›› Issue (1): 32-45.DOI: 10.11949/0438-1157.20210885
• Reviews and monographs • Previous Articles Next Articles
Hengyuan LIU(),Haihui WANG,Jianhong XU()
Received:
2021-06-30
Revised:
2021-10-17
Online:
2022-01-18
Published:
2022-01-05
Contact:
Jianhong XU
通讯作者:
徐建鸿
作者简介:
刘恒源(1997—),男,博士研究生,基金资助:
CLC Number:
Hengyuan LIU, Haihui WANG, Jianhong XU. Advances in electrochemical systems for ammonia synthesis by electrocatalytic reduction of nitrogen[J]. CIESC Journal, 2022, 73(1): 32-45.
刘恒源, 王海辉, 徐建鸿. 电催化氮还原合成氨电化学系统研究进展[J]. 化工学报, 2022, 73(1): 32-45.
Add to citation manager EndNote|Ris|BibTeX
1 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. |
2 | Liao W R, Xie K, Liu L J, et al. Triggering in-plane defect cluster on MoS2 for accelerated dinitrogen electroreduction to ammonia[J]. Journal of Energy Chemistry, 2021, 62: 359-366. |
3 | Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
4 | Ghavam S, Vahdati M, Wilson I A G, et al. Sustainable ammonia production processes[J]. Frontiers in Energy Research, 2021, 9: 580808. |
5 | Giddey S, Badwal S P S, Munnings C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
6 | Foster S L, Bakovic S I P, Duda R D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. |
7 | Kitano M, Kanbara S, Inoue Y, et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis[J]. Nature Communications, 2015, 6: 6731. |
8 | Chen J G, Crooks R M, Seefeldt L C, et al. Beyond fossil fuel-driven nitrogen transformations[J]. Science, 2018, 360(6391): 6611. |
9 | Brown K A, Harris D F, Wilker M B, et al. Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450. |
10 | Tanabe Y, Nishibayashi Y. Developing more sustainable processes for ammonia synthesis[J]. Coordination Chemistry Reviews, 2013, 257(17/18): 2551-2564. |
11 | van der Ham C J M, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
12 | 成晖. 电催化氮还原合成氨的能效提升策略研究[D]. 广州: 华南理工大学, 2020. |
Cheng H. Basic research on energy efficiency improvement strategy of electrocatalytic nitrogen reduction synthesis of ammonia[D]. Guangzhou: South China University of Technology, 2020. | |
13 | Soloveichik G. Renewable energy to fuels through utilization of energy dense liquids (REFUEL)[EB/OL]. . |
14 | Battino R, Rettich T R, Tominaga T. The solubility of nitrogen and air in liquids[J]. Journal of Physical Chemical Reference Data, 1984, 13(2): 563-600. |
15 | Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catalysis Today, 2017, 286: 57-68. |
16 | Abghoui Y, Skúlason E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts[J]. Catalysis Today, 2017, 286: 69-77. |
17 | Zhang Q K, Liu B L, Yu L P, et al. Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium[J]. ChemCatChem, 2020, 12(1): 334-341. |
18 | Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 K[J]. Journal of Physical and Chemical Reference Data, 1989, 18(1): 1-21. |
19 | Skúlason E, Bligaard T, Bligaard T, et al. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Physical Chemistry Chemical Physics, 2012, 14(3): 1235-1245. |
20 | Tao H C, Choi C, Ding L X, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
21 | Su J F, Zhao H Y, Fu W W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589. |
22 | Liu D, Zhang G, Ji Q, et al. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25758-25765. |
23 | Xiong W, Guo Z, Zhao S J, et al. Facile, cost-effective plasma synthesis of self-supportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(34): 19977-19983. |
24 | Liu Y M, Xu Q, Fan X F, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7(46): 26358-26363. |
25 | Yuan M L, Zhang H H, Gao D L, et al. Support effect boosting the electrocatalytic N2 reduction activity of Ni2P/N,P-codoped carbon nanosheet hybrids[J]. Journal of Materials Chemistry A, 2020, 8(5): 2691-2700. |
26 | Liao W R, Qi L, Wang Y L, et al. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance[J]. Advanced Functional Materials, 2021, 31(22): 2009151. |
27 | Li L Q, Tang C, Xia B Q, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
28 | Li P X, Fu W Z, Zhuang P Y, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J]. Small, 2019, 15(40): 1902535. |
29 | Zhang X X, Wu T W, Wang H B, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2-to-NH3 fixation in neutral media[J]. ACS Catalysis, 2019, 9(5): 4609-4615. |
30 | Yang X X, Li K, Cheng D M, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7762-7769. |
31 | Yu J L, Li J, Zhu X J, et al. Structured polyaniline: an efficient and durable electrocatalyst for the nitrogen reduction reaction in acidic media[J]. ChemElectroChem, 2019, 6(8): 2215-2218. |
32 | Yang B, Ding W L, Zhang H H, et al. Recent progress in electrochemical synthesis of ammonia from nitrogen: strategies to improve the catalytic activity and selectivity[J]. Energy & Environmental Science, 2021, 14(2): 672-687. |
33 | 郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491. |
Zheng M Y, Wan Y C, Lyu R T. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491. | |
34 | Cui X Y, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22): 1800369. |
35 | Lan R, Tao S W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte[J]. RSC Advances, 2013, 3(39): 18016-18021. |
36 | Renner J N, Greenlee L F, Ayres K E, et al. Electrochemical synthesis of ammonia: a low pressure, low temperature approach[J]. Interface Magazine, 2015, 24(2): 51-57. |
37 | Lan R, Irvine J T S, Tao S W. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145. |
38 | Chen S M, Perathoner S, Ampelli C, et al. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7393-7400. |
39 | Chen G F, Cao X R, Wu S, et al. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy[J]. Journal of the American Chemical Society, 2017, 139(29): 9771-9774. |
40 | Liu H M, Han S H, Zhao Y, et al. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction[J]. Journal of Materials Chemistry A, 2018, 6(7): 3211-3217. |
41 | Köleli F, Kayan D B. Low overpotential reduction of dinitrogen to ammonia in aqueous media[J]. Journal of Electroanalytical Chemistry, 2010, 638(1): 119-122. |
42 | Kugler K, Luhn M, Schramm J A, et al. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis[J]. Physical Chemistry Chemical Physics, 2015, 17(5): 3768-3782. |
43 | Ampelli C. Electrode design for ammonia synthesis[J]. Nature Catalysis, 2020, 3(5): 420-421. |
44 | Liu Y, Huang B M, Chen X F, et al. Electrocatalytic production of ammonia: biomimetic electrode-electrolyte design for efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 271: 118919. |
45 | Chamoun M, Skårman B, Vidarsson H, et al. Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodes[J]. Journal of the Electrochemical Society, 2017, 164(6): A1251-A1257. |
46 | Singh A R, Rohr B A, Schwalbe J A, et al. Electrochemical ammonia synthesis — the selectivity challenge[J]. ACS Catalysis, 2017, 7(1): 706-709. |
47 | Hao Y C, Guo Y, Chen L W, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2(5): 448-456. |
48 | Malkhandi S, Yang B, Manohar A K, et al. Self-assembled monolayers of n‑alkanethiols suppress hydrogen evolution and increase the efficiency of rechargeable iron battery electrodes[J]. Journal of the American Chemical Society, 2013, 135(1): 347-353. |
49 | Kim K, Lee N, Yoo C Y, et al. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(7): F610-F612. |
50 | Kim K, Yoo C Y, Kim J N, et al. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. Journal of the Electrochemical Society, 2016, 163(14): F1523-F1526. |
51 | Zhou F L, Azofra L M, Ali M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
52 | Suryanto B H R, Kang C S M, Wang D B, et al. Rational electrode-electrolyte design for efficient ammonia electrosynthesis under ambient conditions[J]. ACS Energy Letters, 2018, 3(6): 1219-1224. |
53 | Lazouski N, Chung M, Williams K, et al. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen[J]. Nature Catalysis, 2020, 3(5): 463-469. |
54 | Lazouski N, Schiffer Z J, Williams K, et al. Understanding continuous lithium-mediated electrochemical nitrogen reduction[J]. Joule, 2019, 3(4): 1127-1139. |
55 | Andersen S Z, Statt M J, Bukas V J, et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction[J]. Energy & Environmental Science, 2020, 13(11): 4291-4300. |
56 | Suryanto B H R, Matuszek K, Choi J, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
57 | Guo Y, Yang Q, Wang D H, et al. A rechargeable Al-N2 battery for energy storage and highly efficient N2 fixation[J]. Energy & Environmental Science, 2020, 13(9): 2888-2895. |
58 | Cheng H, Cui P, Wang F R, et al. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium[J]. Angewandte Chemie International Edition, 2019, 58(43): 15541-15547. |
59 | Zhao L, Kuang X, Chen C, et al. Boosting electrocatalytic nitrogen fixation via energy-efficient anodic oxidation of sodium gluconate[J]. Chemical Communications, 2019, 55(68): 10170-10173. |
60 | Bai J, Huang H, Li F M, et al. Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates[J]. Journal of Materials Chemistry A, 2019, 7(37): 21149-21156. |
61 | Xu G R, Batmunkh M, Donne S, et al. Ruthenium(Ⅲ) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading[J]. Journal of Materials Chemistry A, 2019, 7(44): 25433-25440. |
62 | Gao W Y, Hao Y C, Su X, et al. Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates[J]. Chemical Communications, 2019, 55(72): 10705-10708. |
63 | Fang Y F, Liu Z C, Han J R, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2in situ grown on Ti3C2Tx MXene[J]. Advanced Energy Materials, 2019, 9(16): 1803406. |
64 | Li J, Wu J Z, Wang H Y, et al. Acid-durable electride with layered ruthenium for ammonia synthesis: boosting the activity via selective etching[J]. Chemical Science, 2019, 10(22): 5712-5718. |
65 | Yuen S H, Pollard A G. Determination of nitrogen in agricultural materials by the nessler reagent. Ⅱ.—Micro-determinations in plant tissue and in soil extracts[J]. Journal of the Science of Food and Agriculture, 1954, 5(8): 364-369. |
66 | Ivančič I, Degobbis D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method[J]. Water Research, 1984, 18(9): 1143-1147. |
67 | 刘洋. 策略性提升常温常压下电催化合成氨效率的研究[D]. 南宁: 广西大学, 2020. |
Liu Y. Strategically increasing the efficiency of electrocatalytic ammonia synthesis under ambient conditions[D]. Nanning: Guangxi University, 2020. | |
68 | Shen H D, Choi C, Masa J, et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754. |
69 | Shan W P, Liu F D, He H, et al. The remarkable improvement of a Ce-Ti based catalyst for NOx abatement, prepared by a homogeneous precipitation method[J]. ChemCatChem, 2011, 3(8): 1286-1289. |
70 | Wang Z P, Wang Z W, Ye Y, et al. Study on the removal of nitric oxide (NO) by dual oxidant (H2O2/S2O82-) system[J]. Chemical Engineering Science, 2016, 145: 133-140. |
71 | Andersen S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570(7762): 504-508. |
[1] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[2] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[3] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[4] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[5] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[6] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[7] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[8] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[9] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[10] | Weiming SHAO, Wenxue HAN, Wei SONG, Yong YANG, Can CHEN, Dongya ZHAO. Dynamic soft sensor modeling method based on distributed Bayesian hidden Markov regression [J]. CIESC Journal, 2023, 74(6): 2495-2502. |
[11] | Xu GUO, Yongzheng ZHANG, Houbing XIA, Na YANG, Zhenzhen ZHU, Jingyao QI. Research progress in the removal of water pollutants by carbon-based materials via electrooxidation [J]. CIESC Journal, 2023, 74(5): 1862-1874. |
[12] | Zheng ZHANG, Yongping HE, Haidong SUN, Rongzi ZHANG, Zhengping SUN, Jinlan CHEN, Yixuan ZHENG, Xiao DU, Xiaogang HAO. Electrochemically switched ion exchange device with serpentine flow field for selective extraction of lithium [J]. CIESC Journal, 2023, 74(5): 2022-2033. |
[13] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[14] | Ruikang LI, Yingying HE, Weipeng LU, Yuanyuan WANG, Haodong DING, Yongming LUO. Study on the electrochemical enhanced cobalt-based cathode to activate peroxymonosulfate [J]. CIESC Journal, 2023, 74(5): 2207-2216. |
[15] | Zijian WANG, Ming KE, Jiahan LI, Shuting LI, Jinru SUN, Yanbing TONG, Zhiping ZHAO, Jiaying LIU, Lu REN. Progress in preparation and application of short b-axis ZSM-5 molecular sieve [J]. CIESC Journal, 2023, 74(4): 1457-1473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||