CIESC Journal ›› 2023, Vol. 74 ›› Issue (4): 1680-1692.DOI: 10.11949/0438-1157.20221399
• Energy and environmental engineering • Previous Articles Next Articles
Jiajing BAO1(), Hongfei BIE1, Ziwei WANG1, Rui XIAO1, Dong LIU2, Shiliang WU1()
Received:
2022-10-24
Revised:
2023-03-01
Online:
2023-06-02
Published:
2023-04-05
Contact:
Shiliang WU
包嘉靖1(), 别洪飞1, 王子威1, 肖睿1, 刘冬2, 吴石亮1()
通讯作者:
吴石亮
作者简介:
包嘉靖(1997—),男,硕士研究生, bjiajing@163.com
基金资助:
CLC Number:
Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors[J]. CIESC Journal, 2023, 74(4): 1680-1692.
包嘉靖, 别洪飞, 王子威, 肖睿, 刘冬, 吴石亮. 正庚烷对冲扩散火焰中添加长链醚类对碳烟前体生成特性的影响[J]. 化工学报, 2023, 74(4): 1680-1692.
Add to citation manager EndNote|Ris|BibTeX
项目 | 正庚烷 | 正庚烷+ 25%TPGME | 正庚烷+ 25%PODE |
---|---|---|---|
燃料端 | |||
燃料/(ml/min) | 0.30 | 0.30 | 0.30 |
N2/(L/min) | 0.30 | 0.30 | 0.30 |
氧化剂端 | |||
O2/(L/min) | 0.16 | 0.16 | 0.16 |
N2/(L/min) | 0.34 | 0.34 | 0.34 |
屏蔽气 | |||
N2/(L/min) | 4.0 | 4.0 | 4.0 |
Table 1 The counterflow diffusion flame experiment setups
项目 | 正庚烷 | 正庚烷+ 25%TPGME | 正庚烷+ 25%PODE |
---|---|---|---|
燃料端 | |||
燃料/(ml/min) | 0.30 | 0.30 | 0.30 |
N2/(L/min) | 0.30 | 0.30 | 0.30 |
氧化剂端 | |||
O2/(L/min) | 0.16 | 0.16 | 0.16 |
N2/(L/min) | 0.34 | 0.34 | 0.34 |
屏蔽气 | |||
N2/(L/min) | 4.0 | 4.0 | 4.0 |
项目 | 正庚烷 | TPGME | PODE3 | PODE4 | PODE5 |
---|---|---|---|---|---|
化学式 | C7H16 | C10H22O4 | C5H12O4 | C6H14O5 | C7H16O6 |
分子量/(g/mol) | 100.2 | 206.3 | 136.1 | 166.2 | 196.2 |
密度(20℃)/(g/cm3) | 0.68 | 0.97 | 1.02 | 1.06 | 1.10 |
黏度(20℃)/(mm2/s) | 0.59 | 5.50 | 1.03 | 1.65 | 2.04 |
低位发热量/(MJ/kg) | 44.6 | 28.1 | 19.1 | 18.4 | 17.8 |
汽化潜热/(kJ/kg) | 318 | 210 | — | — | — |
沸点/℃ | 98 | 243 | 156 | 202 | 242 |
十六烷值 | 56 | 81 | 78 | 90 | 100 |
含氧量/%(质量) | 0 | 31.0 | 47.1 | 48.2 | 49.0 |
Table 2 The physicochemical properties of n-heptane, TPGME, and PODE[7,33]
项目 | 正庚烷 | TPGME | PODE3 | PODE4 | PODE5 |
---|---|---|---|---|---|
化学式 | C7H16 | C10H22O4 | C5H12O4 | C6H14O5 | C7H16O6 |
分子量/(g/mol) | 100.2 | 206.3 | 136.1 | 166.2 | 196.2 |
密度(20℃)/(g/cm3) | 0.68 | 0.97 | 1.02 | 1.06 | 1.10 |
黏度(20℃)/(mm2/s) | 0.59 | 5.50 | 1.03 | 1.65 | 2.04 |
低位发热量/(MJ/kg) | 44.6 | 28.1 | 19.1 | 18.4 | 17.8 |
汽化潜热/(kJ/kg) | 318 | 210 | — | — | — |
沸点/℃ | 98 | 243 | 156 | 202 | 242 |
十六烷值 | 56 | 81 | 78 | 90 | 100 |
含氧量/%(质量) | 0 | 31.0 | 47.1 | 48.2 | 49.0 |
反应物 | 距离/mm | 正庚烷转化率/% |
---|---|---|
正庚烷 | 0.90 | 30.0 |
25%TPGME | 0.85 | 29.1 |
25%PODE | 0.85 | 29.9 |
Table 3 The locations used for the analysis of reaction kinetics
反应物 | 距离/mm | 正庚烷转化率/% |
---|---|---|
正庚烷 | 0.90 | 30.0 |
25%TPGME | 0.85 | 29.1 |
25%PODE | 0.85 | 29.9 |
Fig.6 The variations of peak mole fraction and the rate of productions for C2H2 [(a),(b)], C2H4 [(c),(d)], and C3H6 [(e),(f)] in n-C7H16, 25%TPGME, 25%FTPGME, 25%PODE and 25%FPODE flames
1 | Viswanathan V K, Thomai P. Performance and emission characteristics analysis of Elaeocarpus Ganitrus biodiesel blend using CI engine[J]. Fuel, 2021, 288: 119611. |
2 | Wu S, Kang D, Xiao R, et al. Autoignition characteristics of bio-based fuels, farnesane and TPGME, in comparison with fuels of similar cetane rating[J]. Proceedings of the Combustion Institute, 2021, 38(4): 5585-5595. |
3 | Khalife E, Tabatabaei M, Demirbas A, et al. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation[J]. Progress in Energy and Combustion Science, 2017, 59: 32-78. |
4 | Bhurat S, Pandey S, Chintala V, et al. Effect of novel fuel vaporiser technology on engine characteristics of partially premixed charge compression ignition (PCCI) engine with toroidal combustion chamber[J]. Fuel, 2022, 315: 123197. |
5 | Agarwal A K, Singh A P, Kumar V. Particulate characteristics of low-temperature combustion (PCCI and RCCI) strategies in single cylinder research engine for developing sustainable and cleaner transportation solution[J]. Environmental Pollution, 2021, 284: 117375. |
6 | Telli G D, Zulian G Y, Lanzanova T D M, et al. An experimental study of performance, combustion and emissions characteristics of an ethanol HCCI engine using water injection[J]. Applied Thermal Engineering, 2022, 204: 118003. |
7 | Wu S, Bao J, Wang Z, et al. The regulated emissions and PAH emissions of bio-based long-chain ethers in a diesel engine[J]. Fuel Processing Technology, 2021, 214: 106724. |
8 | Wu S, Kang D, Liu Y, et al. The oxidation of C2—C4 diols and diol/TPGME blends in a motored engine[J]. Fuel, 2019, 257: 116093. |
9 | Wu S, Kang D, Zhang H, et al. The oxidation characteristics of furan derivatives and binary TPGME blends under engine relevant conditions[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4635-4643. |
10 | Zhang H, Kaczmarek D, Rudolph C, et al. Dimethyl ether (DME) and dimethoxymethane (DMM) as reaction enhancers for methane: combining flame experiments with model-assisted exploration of a polygeneration process[J]. Combustion and Flame, 2022, 237: 111863. |
11 | Liang D, Ren K, Wu Z, et al. Combustion characteristics of oxygenated slurry droplets of nano-Al/EtOH and nano-Al/TPGME blends[J]. Energy, 2021, 220: 119693. |
12 | Sun W, Liu Z, Zhang Y, et al. Comparing the pyrolysis kinetics of dimethoxymethane and 1, 2-dimethoxyethane: an experimental and kinetic modeling study[J]. Combustion and Flame, 2021, 226: 260-273. |
13 | Bora A P, Gupta D P, Durbha K S. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel, 2020, 259: 116262. |
14 | Bae C, Kim J. Alternative fuels for internal combustion engines[J]. Proceedings of the Combustion Institute, 2017, 36(3): 3389-3413. |
15 | Burke U, Pitz W J, Curran H J. Experimental and kinetic modeling study of the shock tube ignition of a large oxygenated fuel: tri-propylene glycol mono-methyl ether[J]. Combustion and Flame, 2015, 162(7): 2916-2927. |
16 | Li N, Sun W, Liu S, et al. A comprehensive experimental and kinetic modeling study of dimethoxymethane combustion[J]. Combustion and Flame, 2021, 233: 111583. |
17 | Sun W, Wang G, Li S, et al. Speciation and the laminar burning velocities of poly(oxymethylene) dimethyl ether 3 (POMDME3) flames: an experimental and modeling study[J]. Proceedings of the Combustion Institute, 2017, 36(1): 1269-1278. |
18 | Westbrook C K, Pitz W J, Curran H J. Chemical kinetic modeling study of the effects of oxygenated hydrocarbons on soot emissions from diesel engines[J]. The Journal of Physical Chemistry A, 2006, 110(21): 6912-6922. |
19 | Burke U, Shahla R, Dagaut P, et al. Species measurements of the particulate matter reducing additive tri-propylene glycol monomethyl ether[J]. Proceedings of the Combustion Institute, 2019, 37(1): 1257-1264. |
20 | Jacobs S, Döntgen M, Alquaity A B S, et al. Detailed kinetic modeling of dimethoxymethane (Part Ⅱ): Experimental and theoretical study of the kinetics and reaction mechanism[J]. Combustion and Flame, 2019, 205: 522-533. |
21 | Kopp W A, Kröger L C, Döntgen M, et al. Detailed kinetic modeling of dimethoxymethane (Part Ⅰ): Ab initio thermochemistry and kinetics predictions for key reactions[J]. Combustion and Flame, 2018, 189: 433-442. |
22 | de Ras K, Kusenberg M, Vanhove G, et al. A detailed experimental and kinetic modeling study on pyrolysis and oxidation of oxymethylene ether-2 (OME-2)[J]. Combustion and Flame, 2022, 238: 111914. |
23 | Gao Z, Hu E, Xu Z, et al. Low to intermediate temperature oxidation studies of dimethoxymethane/n-heptane blends in a jet-stirred reactor[J]. Combustion and Flame, 2019, 207: 20-35. |
24 | Natarajan M, Frame E A, Naegeli D W, et al. Oxygenates for advanced petroleum-based diesel fuels (Part 1): Screening and selection methodology for the oxygenates [J]. SAE Transactions, 2001, 110: 2221-2245. |
25 | González D M A, Piel W, Asmus T, et al. Oxygenates screening for advanced petroleum-based diesel fuels (Part 2): The effect of oxygenate blending compounds on exhaust emissions [J]. SAE Transactions, 2001, 110: 2246-2255. |
26 | Huang H, Li Z, Teng W, et al. Influence of n-butanol-diesel-PODE3-4 fuels coupled pilot injection strategy on combustion and emission characteristics of diesel engine[J]. Fuel, 2019, 236: 313-324. |
27 | Huang H, Teng W, Li Z, et al. Improvement of emission characteristics and maximum pressure rise rate of diesel engines fueled with n-butanol/PODE3-4/diesel blends at high injection pressure[J]. Energy Conversion and Management, 2017, 152: 45-56. |
28 | Liu H, Wang X, Wu Y, et al. Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine[J]. Fuel, 2019, 257: 116064. |
29 | Dumitrescu C E, Mueller C J, Kurtz E. Investigation of a tripropylene-glycol monomethyl ether and diesel blend for soot-free combustion in an optical direct-injection diesel engine[J]. Applied Thermal Engineering, 2016, 101: 639-646. |
30 | Zhao X, Xu L, Chen C, et al. Experimental and numerical study on sooting transition process in iso-octane counterflow diffusion flames: diagnostics and combustion chemistry[J]. Journal of the Energy Institute, 2021, 98: 282-293. |
31 | Zhao R, Liu D. Chemical effects of carbon dioxide in ethylene, ethanol and DME counter-flow diffusion flames: an experimental reference for the fictitious CO2 flame[J]. Journal of the Energy Institute, 2022, 100: 245-258. |
32 | Carbone F, Gomez A. The structure of toluene-doped counterflow gaseous diffusion flames[J]. Combustion and Flame, 2012, 159(10): 3040-3055. |
33 | Aydoğan B. Combustion characteristics, performance and emissions of an acetone/n-heptane fuelled homogenous charge compression ignition (HCCI) engine[J]. Fuel, 2020, 275: 117840. |
34 | Burke U, Metcalfe W K, Burke S M, et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame, 2016, 165: 125-136. |
35 | Zellner R. S.W. Benson: Thermochemical Kinetics, 2nd Ed. John Wiley & Sons, New York-London-Sydney-Toronto 1976.320 Seiten, Preis: £ 16.-, $ 27.-[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1977, 81(9): 877-878. |
36 | Zhang K, Banyon C, Bugler J, et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion and Flame, 2016, 172: 116-135. |
37 | Li Y, Zhou C-W, Somers K P, et al. The oxidation of 2-butene: a high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene[J]. Proceedings of the Combustion Institute, 2017, 36(1): 403-411. |
38 | Burke S M, Burke U, Mc Donagh R, et al. An experimental and modeling study of propene oxidation (Part 2): Ignition delay time and flame speed measurements[J]. Combustion and Flame, 2015, 162(2): 296-314. |
39 | Kéromnès A, Metcalfe W K, Heufer K A, et al. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J]. Combustion and Flame, 2013, 160(6): 995-1011. |
40 | Burke S M, Metcalfe W, Herbinet O, et al. An experimental and modeling study of propene oxidation (Part 1): Speciation measurements in jet-stirred and flow reactors[J]. Combustion and Flame, 2014, 161(11): 2765-2784. |
41 | Pan W, Liu D. Effects of hydrogen additions on premixed rich flames of four butanol isomers[J]. International Journal of Hydrogen Energy, 2017, 42(6): 3833-3841. |
42 | Du D X, Axelbaum R L, Law C K. The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames[J]. Symposium (International) on Combustion, 1991, 23(1): 1501-1507. |
43 | Lutz A E, Kee R J, Grcar J F, et al. OPPDIF: a Fortran program for computing opposed-flow diffusion flames [R]. Livermore, CA (United States): Sandia National Lab (SNL-CA), 1997. |
44 | Valencia-López A M, Bustamante F, Loukou A, et al. Effect of benzene doping on soot precursors formation in non-premixed flames of producer gas (PG)[J]. Combustion and Flame, 2019, 207: 265-280. |
45 | Xu L, Wang Y, Liu D. Effects of oxygenated biofuel additives on soot formation: a comprehensive review of laboratory-scale studies[J]. Fuel, 2022, 313: 122635. |
46 | Sun W, Tao T, Zhang R, et al. Elucidating the flame chemistry of monoglyme via experimental and modeling approaches[J]. Combustion and Flame, 2018, 191: 298-308. |
47 | Zhang Y, Li Y, Liu P, et al. Investigation on the chemical effects of dimethyl ether and ethanol additions on PAH formation in laminar premixed ethylene flames[J]. Fuel, 2019, 256: 115809. |
48 | Frenklach M, Warnatz J. Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame[J]. Combustion Science and Technology, 1987, 51(4/5/6): 265-283. |
49 | Tan Y R, Salamanca M, Pascazio L, et al. The effect of poly(oxymethylene) dimethyl ethers (PODE3) on soot formation in ethylene/PODE3 laminar coflow diffusion flames[J]. Fuel, 2021, 283: 118769. |
50 | Meng X, Hu E, Yoo K H, et al. Experimental and numerical study on autoignition characteristics of the polyoxymethylene dimethyl ether/diesel blends[J]. Energy & Fuels, 2019, 33(3): 2538-2546. |
[1] | Runtao WANG, Zejun LUO, Chu WANG, Xifeng ZHU. Synergistic effect during catalytic co-pyrolysis of bio-oil distillation residue and waste plastic [J]. CIESC Journal, 2022, 73(11): 5088-5097. |
[2] | YAN Beibei, WANG Jian, LIU Bin, CHEN Guanyi, CHENG Zhanjun. Research progress of bio-oil metal hydrothermal in-situ hydrogenation technology [J]. CIESC Journal, 2021, 72(4): 1783-1795. |
[3] | Yaojun YANG, Rui DIAO, Chu WANG, Xifeng ZHU. Catalytic effect of different metal oxides on pyrolysis behaviors of heavy bio-oil: a comparative study [J]. CIESC Journal, 2021, 72(11): 5820-5830. |
[4] | Yan SUN, Xiaowen SHEN, Xiwei XU, Enchen JIANG, Xuecong LIU. Coupled chemical looping and catalytic reforming to produce syngas from pyrolysis bio-oil [J]. CIESC Journal, 2021, 72(11): 5607-5619. |
[5] | Wei DENG,Chunho LAM,Zhe XIONG,Xuepeng WANG,Jun XU,Long JIANG,Sheng SU,Yi WANG,Song HU,Jun XIANG. Research progress in electrocatalytic hydrogenation upgrading of bio-oil [J]. CIESC Journal, 2021, 72(10): 4987-5001. |
[6] | Yinhai SU,Shuping ZHANG,Lingqin LIU,Yuanquan XIONG. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon [J]. CIESC Journal, 2021, 72(10): 5206-5217. |
[7] | Shanhong MA, Feng YE, Yanhong WANG, Xuemei LANG, Shuanshi FAN, Gang LI. Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration [J]. CIESC Journal, 2020, 71(7): 3345-3353. |
[8] | Zejun LUO, Yonghua HU, Yusong WANG, Xiefei ZHU, Xifeng ZHU. Physicochemical properties and pyrolysis characteristics of heavy bio-oil [J]. CIESC Journal, 2019, 70(8): 3196-3201. |
[9] | Laizhi SUN, Lei CHEN, Baofeng ZHAO, Shuangxia YANG, Xinping XIE, Fanjun MENG, Hongyu SI. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst [J]. CIESC Journal, 2019, 70(8): 3160-3166. |
[10] | Yongchen ZHU, Xiaohua LI, Xiaolei ZHANG, Chao HU, Wenbin DONG, Jingfeng CHENG, Shanshan SHAO. Study on regeneration of La modified multistage pore HZSM-5 by NTP and catalytic upgrading of bio-oil [J]. CIESC Journal, 2019, 70(5): 1795-1803. |
[11] | ZHANG Jizong, CHANG Houchun, CHANG Jianmin, LONG Jinxing, LI Xuehui. Effect of bio-oil on properties of bio-oil starch adhesive [J]. CIESC Journal, 2018, 69(S1): 123-128. |
[12] | ZHANG Jizong, CHANG Houchun, CHANG Jianmin, LONG Jinxing, LI Xuehui. Curing characteristics of bio-oil starch adhesive [J]. CIESC Journal, 2018, 69(12): 5309-5315. |
[13] | CHEN Yongxing, WEI Qifeng, REN Xiulian. Analysis of hydrothermal liquefaction of algae residue with n-propylamine solution [J]. CIESC Journal, 2017, 68(9): 3592-3599. |
[14] | HU Yanjun, MA Wenchao, WU Yanan, CHEN Jiang. Characterization on PAHs distributions in pyrolysis bio-oil from different wastewater sewage sludge [J]. CIESC Journal, 2016, 67(7): 3016-3022. |
[15] | ZHANG Jixiang, WANG Dong, JIANG Baohui, WEI Yaodong. Hydrothermal liquefaction of kitchen waste for bio-oil production [J]. CIESC Journal, 2016, 67(4): 1475-1482. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||