CIESC Journal ›› 2020, Vol. 71 ›› Issue (7): 3345-3353.DOI: 10.11949/0438-1157.20200143
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Shanhong MA1(),Feng YE2,Yanhong WANG2,Xuemei LANG2,Shuanshi FAN2,Gang LI2()
Received:
2020-02-15
Revised:
2020-04-16
Online:
2020-07-05
Published:
2020-07-05
Contact:
Gang LI
马珊宏1(),叶枫2,王燕鸿2,郎雪梅2,樊栓狮2,李刚2()
通讯作者:
李刚
作者简介:
马珊宏(1994—),男,硕士研究生,基金资助:
CLC Number:
Shanhong MA, Feng YE, Yanhong WANG, Xuemei LANG, Shuanshi FAN, Gang LI. Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration[J]. CIESC Journal, 2020, 71(7): 3345-3353.
马珊宏, 叶枫, 王燕鸿, 郎雪梅, 樊栓狮, 李刚. ZSM-5沸石膜用于生物油的脱水分离及其再生过程研究[J]. 化工学报, 2020, 71(7): 3345-3353.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 XRD patterns of the support (a), ZSM-5 zeolite seeds (b), bio-oil treated ZSM-5 seeds (c), ZSM-5 seeded support (d) and ZSM-5 zeolite membrane (e)
时间/h | 渗透通量/(kg·m-2·h-1) | 渗透侧水含量/% (质量) |
---|---|---|
1 | 0.445 | 97.7 |
6 | 0.093 | 99.0 |
12 | 0.038 | 95.9 |
18 | 0.038 | 99.1 |
24 | 0.037 | 98.2 |
30 | 0.036 | 98.8 |
36 | 0.037 | 99.1 |
Table 1 Time course of the pervaporation performance of the ZSM-5 zeolite membrane for bio-oil dehydration at 30℃
时间/h | 渗透通量/(kg·m-2·h-1) | 渗透侧水含量/% (质量) |
---|---|---|
1 | 0.445 | 97.7 |
6 | 0.093 | 99.0 |
12 | 0.038 | 95.9 |
18 | 0.038 | 99.1 |
24 | 0.037 | 98.2 |
30 | 0.036 | 98.8 |
36 | 0.037 | 99.1 |
ZSM-5 沸石膜 | 纯水体系 | 生物油体系 | ||
---|---|---|---|---|
k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | |
新膜 | 1.14×10-5 | -6.82 | 1.11×10-8 | -17.99 |
R-140 | 1.29×10-6 | -11.47 | 8.72×10-10 | -23.28 |
R-180 | 1.45×10-6 | -11.47 | 1.65×10-9 | -22.77 |
R-220 | 2.89×10-6 | -9.98 | 4.58×10-9 | -20.16 |
Table 2 Activation energies and pre-exponential factors for water permeation through the fresh and regenerated ZSM-5 membrane for pure water and bio-oil systems
ZSM-5 沸石膜 | 纯水体系 | 生物油体系 | ||
---|---|---|---|---|
k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | k0,水/(mol·Pa-1·m-2·s-1) | EP,水/ (kJ·mol-1) | |
新膜 | 1.14×10-5 | -6.82 | 1.11×10-8 | -17.99 |
R-140 | 1.29×10-6 | -11.47 | 8.72×10-10 | -23.28 |
R-180 | 1.45×10-6 | -11.47 | 1.65×10-9 | -22.77 |
R-220 | 2.89×10-6 | -9.98 | 4.58×10-9 | -20.16 |
1 | Bu Q, Chen K, Xie W, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291: 121860. |
2 | Chen X, Che Q, Li S, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
3 | Shafaghat H, Kim J M, Lee I G, et al. Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts[J]. Renewable Energy, 2019, 144: 159-166. |
4 | Hassan E B, Abou-Yousef H, Steele P. Increasing the efficiency of fast pyrolysis process through sugar yield maximization and separation from aqueous fraction bio-oil[J]. Fuel Processing Technology, 2013, 110: 65-72. |
5 | Zhang L, Yu Z, Li J, et al. Steam reforming of typical small organics derived from bio-oil: correlation of their reaction behaviors with molecular structures[J]. Fuel, 2020, 259: 116214. |
6 | 熊万明, 陈金珠, 吴东平, 等. 生物油中有机化合物的分析与表征[J]. 分析测试学报, 2013, 32(8): 1024-1030. |
Xiong W M, Chen J Z, Wu D P, et al. Progresses on analysis and characterization of organic compounds in bio-oil[J]. Journal of Instrumental Analysis, 2013, 32(8): 1024-1030. | |
7 | Aysu T, Durak H, Guner S, et al. Bio-oil production via catalytic pyrolysis of anchusa azurea: effects of operating conditions on product yields and chromatographic characterization[J]. Bioresource Technology, 2016, 205: 7-14. |
8 | Han Y L, Gholizadeh M, Tran C C, et al. Hydrotreatment of pyrolysis bio-oil: a review[J]. Fuel Processing Technology, 2019, 195: 106140. |
9 | 王华, 刘荣厚, 张春梅, 等. 卡尔费休方法测定生物油含水量的试验研究[J]. 可再生能源, 2005, 3(121): 17-20. |
Wang H, Liu R H, Zhang C M, et al. An experimental study on determination of the water content in bio-oil by Karl-Fischer titration[J]. Renewable Energy, 2005, 3(121): 17-20. | |
10 | 孙玉凤, 高虹, 王通洲. 玉米秸秆生物质热裂解产物分析[J]. 沈阳理工大学学报, 2010, 29(5): 72-76. |
Sun Y F, Gao H, Wang T Z. Study on biomass pyrolysates of maize stalk [J]. Journal of Shenyang Ligong University, 2010, 29(5): 72-76. | |
11 | 徐莹, 王铁军, 马隆龙, 等. 真空热解松木粉制备生物油[J]. 农业工程学报, 2013, 29(1): 196-201. |
Xu Y, Wang T J, Ma L L, et al. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 196-201. | |
12 | Wang S, Go Y, Liu Q, et al. Separation of bio-oil by molecular distillation[J]. Fuel Processing Technology, 2009, 90(5): 738-745. |
13 | Wang Y, Wang S, Leng F, et al. Separation and characterization of pyrolytic lignins from the heavy fraction of bio-oil by molecular distillation[J]. Separation and Purification Technology, 2015, 152: 123-132. |
14 | Capunitan J A, Capareda S C. Characterization and separation of corn stover bio-oil by fractional distillation[J]. Fuel, 2013, 112:60-73. |
15 | Teella A, Huber G W, Ford D M. Separation of acetic acid from the aqueous fraction of fast pyrolysis bio-oils using nanofiltration and reverse osmosis membranes[J]. Journal of Membrane Science, 2011, 378(1/2): 495-502. |
16 | Li G, Ma S, Yang H, et al. A graphene oxide membrane with self-regulated nanochannels for the exceptionally stable bio-oil dehydration[J]. AIChE Journal, 2020, 66(1): e16753. |
17 | Huang A, Lin Y S, Yang W. Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding[J]. Journal of Membrane Science, 2004, 245(1/2): 41-51. |
18 | Cao Y, Li Y, Wang M, et al. High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system[J]. Journal of Membrane Science, 2019, 570: 445-454. |
19 | Cui Y, Kita H, Okamoto K. Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability[J]. Journal of Membrane Science, 2004, 236(1): 17-27. |
20 | Zhou H, Li Y, Zhu G, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties[J]. Separation and Purification Technology, 2009, 65(2): 164-172. |
21 | Zhou R, Hu L, Zhang Y, et al. Synthesis of oriented zeolite T membranes from clear solutions and their pervaporation properties[J]. Microporous and Mesoporous Materials, 2013, 174: 81-89. |
22 | Wang X, Chen Y, Zhang C, et al. Preparation and characterization of high-flux T-type zeolite membranes supported on YSZ hollow fibers[J]. Journal of Membrane Science, 2014, 455: 294-304. |
23 | Lin X, Kita H, Okamoto K. Silicalite membrane preparation, characterization and separation performance[J]. Industrial & Engineering Chemistry Research, 2001, 40(19): 4069-4078. |
24 | Chen H, Li Y, Zhu G, et al. Synthesis and pervaporation performance of high-reproducibility silicalite-1 membranes[J]. Chinese Science Bulletin, 2008, 53(22): 3505-3510. |
25 | 金鸽, 周志辉, 刘红, 等. 亲水性沸石膜在异丙醇脱水中的应用及其耐酸性研究[J]. 膜科学与技术, 2014, 34(6): 77-83. |
Jin G, Zhou Z H, Liu H, et al. Application of hydrophilic zeolite membranes in isopropanol dehydration and acid resistance study[J]. Membrane Science and Technology, 2014, 34(6): 77-83. | |
26 | 李良清, 李佳佳, 张进建, 等. 渗透汽化异丙醇脱水ZSM-5沸石膜的制备与表征[J]. 现代化工, 2018, 38(9): 136-141. |
Li L Q, Li J J, Zhang J J, et al. Preparation and characterization of ZSM-5 zeolite membrane for dehydration of isopropanol via pervaporation[J]. Modern Chemical Industry, 2018, 38(9): 136-141. | |
27 | Li X, Kita H, Zhu H, et al. Synthesis of long-term acid-stable zeolite membranes and their potential application to esterification reactions[J]. Journal of Membrane Science, 2009, 339(1/2): 224-232. |
28 | Zhu M, Kumakiri I, Tanaka K, et al. Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane[J]. Microporous and Mesoporous Materials, 2013, 181: 47-53. |
29 | Li G, Kikuchi E, Matsukata M. A study on the pervaporation of water-acetic acid mixtures through ZSM-5 zeolite membranes[J]. Journal of Membrane Science, 2003, 218(1/2): 185-194. |
30 | Li L, Yang J, Li J, et al. High performance ZSM-5 membranes on coarse macroporous α-Al2O3 supports for dehydration of alcohols[J]. AIChE Journal, 2016, 62(8): 2813-2824. |
31 | Zhu M, Lu Z, Kumakiri I, et al. Preparation and characterization of high water perm-selectivity ZSM-5 membrane without organic template[J]. Journal of Membrane Science, 2012, 415: 57-65. |
32 | Hedlund J, Noack M, Kolsch P, et al. ZSM-5 membranes synthesized without organic templates using a seeding technique[J]. Journal of Membrane Science, 1999, 159(1/2): 263-273. |
33 | Bettens B, Dekeyzer S, der Bruggen B V, et al. Transport of pure components in pervaporation through a microporous silica membrane [J]. The Journal of Physical Chemistry B, 2005, 109(11): 5216-5222. |
34 | Xiao J, Wei J. Diffusion mechanism of hydrocarbons in zeolites(Ⅰ): Theory[J]. Chemical Engineering Science, 1992, 47(5): 1123-1141. |
[1] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[2] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[3] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[4] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[5] | Yali HU, Junyong HU, Suxia MA, Yukun SUN, Xueyi TAN, Jiaxin HUANG, Fengyuan YANG. Development of novel working fluid and study on electrochemical characteristics of reverse electrodialysis heat engine [J]. CIESC Journal, 2023, 74(8): 3513-3521. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[8] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[9] | Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration [J]. CIESC Journal, 2023, 74(7): 2988-2998. |
[10] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[11] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[12] | Kuikui HAN, Xianglong TAN, Jinzhi LI, Ting YANG, Chun ZHANG, Yongfen ZHANG, Hongquan LIU, Zhongwei YU, Xuehong GU. Four-channel hollow fiber MFI zeolite membrane for the separation of xylene isomers [J]. CIESC Journal, 2023, 74(6): 2468-2476. |
[13] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
[14] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[15] | Hao GU, Fujian ZHANG, Zhen LIU, Wenxuan ZHOU, Peng ZHANG, Zhongqiang ZHANG. Desalination performance and mechanism of porous graphene membrane in temporal dimension under mechanical-electrical coupling [J]. CIESC Journal, 2023, 74(5): 2067-2074. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||