CIESC Journal ›› 2021, Vol. 72 ›› Issue (10): 5206-5217.DOI: 10.11949/0438-1157.20210416
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yinhai SU1(),Shuping ZHANG2(),Lingqin LIU1,Yuanquan XIONG3()
Received:
2021-03-24
Revised:
2021-07-08
Online:
2021-10-05
Published:
2021-10-05
Contact:
Shuping ZHANG,Yuanquan XIONG
通讯作者:
张书平,熊源泉
作者简介:
苏银海(1990—),男,博士,讲师,基金资助:
CLC Number:
Yinhai SU,Shuping ZHANG,Lingqin LIU,Yuanquan XIONG. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon[J]. CIESC Journal, 2021, 72(10): 5206-5217.
苏银海,张书平,刘凌沁,熊源泉. 活性炭催化热解纤维素协同制备酚类和合成气[J]. 化工学报, 2021, 72(10): 5206-5217.
Add to citation manager EndNote|Ris|BibTeX
样品 | 工业分析/(%(质量), 干燥基) | 元素分析/(%(质量), 干燥无灰基) | 热值/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | O | N | O/C | H/C | ||
纤维素 | 0.03±0.01 | 94.08±0.18 | 5.89±0.19 | 43.07±0.24 | 6.47±0.09 | 50.46±0.33 | — | 0.87±0.001 | 1.80±0.008 | 17.433±0.536 |
杨木粉 | 0.38±0.05 | 85.51±0.21 | 14.11±0.26 | 50.98±0.32 | 6.08±0.27 | 42.80±0.64 | 0.14±0.05 | 0.63±0.009 | 1.43±0.038 | 17.811±0.389 |
Table 1 Fuel characteristics analysis of cellulose and poplar wood
样品 | 工业分析/(%(质量), 干燥基) | 元素分析/(%(质量), 干燥无灰基) | 热值/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灰分 | 挥发分 | 固定碳 | C | H | O | N | O/C | H/C | ||
纤维素 | 0.03±0.01 | 94.08±0.18 | 5.89±0.19 | 43.07±0.24 | 6.47±0.09 | 50.46±0.33 | — | 0.87±0.001 | 1.80±0.008 | 17.433±0.536 |
杨木粉 | 0.38±0.05 | 85.51±0.21 | 14.11±0.26 | 50.98±0.32 | 6.08±0.27 | 42.80±0.64 | 0.14±0.05 | 0.63±0.009 | 1.43±0.038 | 17.811±0.389 |
1 | Schmidt R J. Industrial catalytic processes—phenol production[J]. Applied Catalysis A: General, 2005, 280(1): 89-103. |
2 | Zhou Y, Wang Y P, Fan L L, et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 35-41. |
3 | 姜小祥. 基于组分分离的松木残渣生物油品质提升与老化预测模型研究[D]. 南京: 东南大学, 2011. |
Jiang X X. Study on quality improvement and aging prediction model of bio-oil from pine residues based on component separation [D]. Nanjing: Southeast University, 2011. | |
4 | 李德彬. 生物质催化热解产酚及其生物油中酚类物质的络合提取与配位反应机理的研究[D]. 厦门: 厦门大学, 2017. |
Li D B. Catalytic pyrolysis of biomass for the production of phenolic compounds and complexation precipitation extraction of phenols from bio-oil with the study of complexation reaction mechanism [D]. Xiamen: Xiamen University,2017. | |
5 | Wang S R, Ru B, Lin H Z, et al. Pyrolysis behaviors of four lignin polymers isolated from the same pine wood[J]. Bioresource Technology, 2015, 182: 120-127. |
6 | Duan D L, Lei H W, Wang Y P, et al. Renewable phenol production from lignin with acid pretreatment and ex-situ catalytic pyrolysis[J]. Journal of Cleaner Production, 2019, 231: 331-340. |
7 | Zheng A Q, Zhao Z L, Chang S, et al. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production[J]. Green Chemistry, 2014, 16(5): 2580-2586. |
8 | Yi L L, Liu H, Xiao K X, et al. In situ upgrading of bio-oil via CaO catalyst derived from organic precursors[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3119-3126. |
9 | Mamaeva A, Tahmasebi A, Yu J L. The effects of mineral salt catalysts on selectivity of phenolic compounds in bio-oil during microwave pyrolysis of peanut shell[J]. Korean Journal of Chemical Engineering, 2017, 34(3): 672-680. |
10 | Peng C N, Zhang G Y, Yue J, et al. Pyrolysis of lignin for phenols with alkaline additive[J]. Fuel Processing Technology, 2014, 124: 212-221. |
11 | Xu L J, Zhong Q Q, Dong Q, et al. Co-production of phenolic oil and CaO/char deoxidation catalyst via catalytic fast pyrolysis of phenol-formaldehyde resin with Ca(OH)2[J]. Journal of Analytical and Applied Pyrolysis, 2019, 142: 104663. |
12 | Lu Q, Zhang Z B, Yang X C, et al. Catalytic fast pyrolysis of biomass impregnated with K3PO4 to produce phenolic compounds: analytical Py-GC/MS study[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 139-145. |
13 | Lu Q, Zhang Z X, Wang X, et al. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon[J]. Frontiers in Chemistry, 2018, 6:32. |
14 | Bu Q, Lei H W, Wang L, et al. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons[J]. Bioresource Technology, 2014, 162: 142-147. |
15 | Yang Z X, Lei H W, Qian K Z, et al. Renewable bio-phenols from in situ and ex situ catalytic pyrolysis of Douglas fir pellet over biobased activated carbons[J]. Sustainable Energy & Fuels, 2018, 2(4): 894-904. |
16 | Bu Q, Lei H W, Wang L, et al. Renewable phenols production by catalytic microwave pyrolysis of Douglas fir sawdust pellets with activated carbon catalysts[J]. Bioresource Technology, 2013, 142: 546-552. |
17 | Su Y H, Xu D, Liu L Q, et al. Simultaneous catalytic conversion of acid-pretreated biomass into high-quality syngas and bio-oil at mild temperature[J]. Energy & Fuels, 2020, 34(7): 8366-8375. |
18 | Yang H P, Yan R, Chen H P, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel, 2007, 86(12/13): 1781-1788. |
19 | Zhang Y Y, Lei H W, Yang Z X, et al. From glucose-based carbohydrates to phenol-rich bio-oils integrated with syngas production via catalytic pyrolysis over an activated carbon catalyst[J]. Green Chemistry, 2018, 20(14): 3346-3358. |
20 | Su Y H, Zhang S P, Liu L Q, et al. Combination of acid washing and torrefaction on co-production of syngas and phenoli-riched bio-oil via low-temperature catalytic pyrolysis[J]. Energy, 2020, 210: 118633. |
21 | Liu G C, Liao Y F, Wu Y T, et al. Synthesis gas production from microalgae gasification in the presence of Fe2O3 oxygen carrier and CaO additive[J]. Applied Energy, 2018, 212: 955-965. |
22 | Zhang Y Y, Lei H W, Yang Z X, et al. Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5349-5357. |
23 | Chen X, Chen Y Q, Chen Z, et al. Catalytic fast pyrolysis of cellulose to produce furan compounds with SAPO type catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 53-60. |
24 | Xie Y H, Su Y H, Wang P, et al. In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts[J]. Fuel Processing Technology, 2018, 182: 77-87. |
25 | Gargiulo V, Giudicianni P, Alfè M, et al. About the influence of doping approach on the alkali metal catalyzed slow pyrolysis of xylan[J]. Journal of Chemistry, 2019, 2019: 1-11. |
26 | Cen K H, Cao X B, Chen D Y, et al. Leaching of alkali and alkaline earth metallic species (AAEMs) with phenolic substances in bio-oil and its effect on pyrolysis characteristics of moso bamboo[J]. Fuel Processing Technology, 2020, 200: 106332. |
27 | Su Y H, Liu L Q, Zhang S P, et al. A green route for pyrolysis poly-generation of typical high ash biomass, rice husk: effects on simultaneous production of carbonic oxide-rich syngas, phenol-abundant bio-oil, high-adsorption porous carbon and amorphous silicon dioxide[J]. Bioresource Technology, 2020, 295: 122243. |
28 | Lin Y C, Cho J, Tompsett G A, et al. Kinetics and mechanism of cellulose pyrolysis[J]. The Journal of Physical Chemistry C, 2009, 113(46): 20097-20107. |
29 | Wang K G, Kim K H, Brown R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chemistry, 2014, 16(2): 727-735. |
30 | Von Ballmoos R, Meier W M. Oxygen-18 exchange between zeolite ZSM-5 and water[J]. The Journal of Physical Chemistry, 1982, 86(14): 2698-2700. |
31 | Mukarakate C, Mcbrayer J D, Evans T J, et al. Catalytic fast pyrolysis of biomass: the reactions of water and aromatic intermediates produces phenols[J]. Green Chemistry, 2015, 17(8): 4217-4227. |
32 | Zhang H Y, Ma Y N, Shao S S, et al. The effects of potassium on distributions of bio-oils obtained from fast pyrolysis of agricultural and forest biomass in a fluidized bed[J]. Applied Energy, 2017, 208: 867-877. |
33 | Saddawi A, Jones J M, Williams A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass[J]. Fuel Processing Technology, 2012, 104: 189-197. |
34 | Mahadevan R, Adhikari S, Shakya R, et al. Effect of alkali and alkaline earth metals on in-situ catalytic fast pyrolysis of lignocellulosic biomass: a microreactor study[J]. Energy & Fuels, 2016, 30(4): 3045-3056. |
[1] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[2] | Lei WU, Jiao LIU, Changcong LI, Jun ZHOU, Gan YE, Tiantian LIU, Ruiyu ZHU, Qiuli ZHANG, Yonghui SONG. Catalytic microwave pyrolysis of low-rank pulverized coal for preparation of high value-added modified bluecoke powders containing carbon nanotubes [J]. CIESC Journal, 2023, 74(9): 3956-3967. |
[3] | Jiaqi CHEN, Wanyu ZHAO, Ruichong YAO, Daolin HOU, Sheying DONG. Synthesis of pistachio shell-based carbon dots and their corrosion inhibition behavior on Q235 carbon steel [J]. CIESC Journal, 2023, 74(8): 3446-3456. |
[4] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[5] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[6] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[7] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[8] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[9] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[10] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[11] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[12] | Haiqin LIU, Bowen LI, Zhe LING, Liang LIU, Juan YU, Yimin FAN, Qiang YONG. Facile preparation and properties of chemically modified galactomannan films via mild hydroxy-alkyne click reaction [J]. CIESC Journal, 2023, 74(3): 1370-1378. |
[13] | Ruizhe CHEN, Leilei CHENG, Jing GU, Haoran YUAN, Yong CHEN. Research progress in chemical recovery technology of fiber-reinforced polymer composites [J]. CIESC Journal, 2023, 74(3): 981-994. |
[14] | Lingxin ZU, Rongting HU, Xin LI, Yudao CHEN, Guanglin CHEN. Carbon release products and denitrification bioavailability from chemical components of woody biomass [J]. CIESC Journal, 2023, 74(3): 1332-1342. |
[15] | Jieyuan ZHENG, Xianwei ZHANG, Jintao WAN, Hong FAN. Synthesis and curing kinetic analysis of eugenol-based siloxane epoxy resin [J]. CIESC Journal, 2023, 74(2): 924-932. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||