CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3716-3730.DOI: 10.11949/0438-1157.20230548
• Ionic Liquids and Green Processes • Previous Articles Next Articles
Jie CHEN1,2(), Yongsheng LIN3, Kai XIAO3, Chen YANG1,2(
), Ting QIU1,2(
)
Received:
2023-06-07
Revised:
2023-08-23
Online:
2023-11-20
Published:
2023-09-25
Contact:
Chen YANG, Ting QIU
陈杰1,2(), 林永胜3, 肖恺3, 杨臣1,2(
), 邱挺1,2(
)
通讯作者:
杨臣,邱挺
作者简介:
陈杰(1990—),男,博士,副教授,jiechen@fzu.edu.cn
基金资助:
CLC Number:
Jie CHEN, Yongsheng LIN, Kai XIAO, Chen YANG, Ting QIU. Study on catalytic synthesis of sec-butanol by tunable choline-based basic ionic liquids[J]. CIESC Journal, 2023, 74(9): 3716-3730.
陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730.
离子液体 | 核磁数据 |
---|---|
[Ch][IM] | 7.11 (s, 1H, CH), 6.68 (s, 2H, CH2), 3.85 (m, J = 5.3, 2.6 Hz, 2H, CH2), 3.39~3.37 (m, 2H, CH2), 3.12 (s, 9H, CH3) |
[Ch][OH] | 5.74 (t, J = 5.2 Hz, 1H, OH), 3.87~3.74 (m, 2H, CH2), 3.48~3.42 (m, 2H, CH2), 3.17 (s, 9H, CH3) |
[Ch][CH3O] | 3.84 (s, 2H, CH2), 3.38~3.27 (m, 2H, CH2), 3.15 (d, J = 11.5 Hz, 12H, CH3) |
[Ch][1,2,4-Triz] | 6.80 (t, J = 7.7 Hz, 2H, CH), 6.24 (d, J = 8.0 Hz, 2H, CH), 6.06 (t, J = 7.0 Hz, 1H, CH), 3.81 (dt, J = 5.3, 2.6 Hz, 2H, CH2), 3.41~3.28 (m, 2H, CH2), 3.11 (s, 9H, CH3) |
[Ch][2-PyO] | 7.65 (s, 2H, CH), 3.86 (m, J = 5.5, 2.7 Hz, 2H, CH2), 3.40 (dd, J = 4.3, 2.6 Hz, 2H, CH2), 3.13 (s, 9H, CH3) |
Table 1 The 1H NMR data of choline-based ionic liquids
离子液体 | 核磁数据 |
---|---|
[Ch][IM] | 7.11 (s, 1H, CH), 6.68 (s, 2H, CH2), 3.85 (m, J = 5.3, 2.6 Hz, 2H, CH2), 3.39~3.37 (m, 2H, CH2), 3.12 (s, 9H, CH3) |
[Ch][OH] | 5.74 (t, J = 5.2 Hz, 1H, OH), 3.87~3.74 (m, 2H, CH2), 3.48~3.42 (m, 2H, CH2), 3.17 (s, 9H, CH3) |
[Ch][CH3O] | 3.84 (s, 2H, CH2), 3.38~3.27 (m, 2H, CH2), 3.15 (d, J = 11.5 Hz, 12H, CH3) |
[Ch][1,2,4-Triz] | 6.80 (t, J = 7.7 Hz, 2H, CH), 6.24 (d, J = 8.0 Hz, 2H, CH), 6.06 (t, J = 7.0 Hz, 1H, CH), 3.81 (dt, J = 5.3, 2.6 Hz, 2H, CH2), 3.41~3.28 (m, 2H, CH2), 3.11 (s, 9H, CH3) |
[Ch][2-PyO] | 7.65 (s, 2H, CH), 3.86 (m, J = 5.5, 2.7 Hz, 2H, CH2), 3.40 (dd, J = 4.3, 2.6 Hz, 2H, CH2), 3.13 (s, 9H, CH3) |
催化剂 | 转化率/%① | pH(水)② | pH(甲醇)② |
---|---|---|---|
氯化胆碱 | 0 | 0 | 0 |
CH3ONa | 84.75 | 12.14 | 11.21 |
[Ch][IM] | 90.35 | 12.80 | 11.36 |
[Ch][OH] | 83.12 | 12.54 | 11.05 |
[Ch][CH3O] | 62.35 | 11.65 | 10.67 |
[Ch][2-PyO] | 56.25 | 11.55 | 10.49 |
[Ch][1,2,4-Triz] | 48.78 | 11.36 | 10.29 |
Table 2 Catalytic performance and basicity of choline-based ionic liquids for the synthesis of sec-butanol
催化剂 | 转化率/%① | pH(水)② | pH(甲醇)② |
---|---|---|---|
氯化胆碱 | 0 | 0 | 0 |
CH3ONa | 84.75 | 12.14 | 11.21 |
[Ch][IM] | 90.35 | 12.80 | 11.36 |
[Ch][OH] | 83.12 | 12.54 | 11.05 |
[Ch][CH3O] | 62.35 | 11.65 | 10.67 |
[Ch][2-PyO] | 56.25 | 11.55 | 10.49 |
[Ch][1,2,4-Triz] | 48.78 | 11.36 | 10.29 |
影响因素 | 水平及范围 | ||
---|---|---|---|
-1 | 0 | 1 | |
反应温度(A)/℃ | 30 | 50 | 70 |
醇酯比(B) | 1∶1 | 3∶1 | 5∶1 |
催化剂投加量(C)/% | 1 | 5 | 9 |
Table 3 The factors and levels of RSM
影响因素 | 水平及范围 | ||
---|---|---|---|
-1 | 0 | 1 | |
反应温度(A)/℃ | 30 | 50 | 70 |
醇酯比(B) | 1∶1 | 3∶1 | 5∶1 |
催化剂投加量(C)/% | 1 | 5 | 9 |
序列 | A | B | C | 乙酸仲丁酯转化率/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 1 | 1 | 0 | 94.01 | 94.87 |
2 | 1 | 0 | -1 | 74.70 | 73.46 |
3 | 0 | 0 | 0 | 86.51 | 85.42 |
4 | -1 | 1 | 0 | 78.85 | 77.46 |
5 | 0 | 0 | 0 | 84.14 | 85.42 |
6 | 0 | 1 | 1 | 94.73 | 94.88 |
7 | -1 | -1 | 0 | 60.66 | 59.80 |
8 | 1 | 0 | 1 | 86.97 | 85.96 |
9 | -1 | 0 | -1 | 48.20 | 49.21 |
10 | 1 | -1 | 0 | 62.35 | 63.74 |
11 | 0 | -1 | -1 | 44.58 | 44.43 |
12 | 0 | 1 | -1 | 65.45 | 65.83 |
13 | 0 | 0 | 0 | 85.70 | 85.42 |
14 | 0 | 0 | 0 | 85.37 | 85.42 |
15 | 0 | 0 | 0 | 85.40 | 85.42 |
16 | 0 | -1 | 1 | 67.87 | 67.49 |
17 | -1 | 0 | 1 | 87.59 | 88.83 |
Table 4 Experimental design and results of RSM
序列 | A | B | C | 乙酸仲丁酯转化率/% | |
---|---|---|---|---|---|
实验值 | 预测值 | ||||
1 | 1 | 1 | 0 | 94.01 | 94.87 |
2 | 1 | 0 | -1 | 74.70 | 73.46 |
3 | 0 | 0 | 0 | 86.51 | 85.42 |
4 | -1 | 1 | 0 | 78.85 | 77.46 |
5 | 0 | 0 | 0 | 84.14 | 85.42 |
6 | 0 | 1 | 1 | 94.73 | 94.88 |
7 | -1 | -1 | 0 | 60.66 | 59.80 |
8 | 1 | 0 | 1 | 86.97 | 85.96 |
9 | -1 | 0 | -1 | 48.20 | 49.21 |
10 | 1 | -1 | 0 | 62.35 | 63.74 |
11 | 0 | -1 | -1 | 44.58 | 44.43 |
12 | 0 | 1 | -1 | 65.45 | 65.83 |
13 | 0 | 0 | 0 | 85.70 | 85.42 |
14 | 0 | 0 | 0 | 85.37 | 85.42 |
15 | 0 | 0 | 0 | 85.40 | 85.42 |
16 | 0 | -1 | 1 | 67.87 | 67.49 |
17 | -1 | 0 | 1 | 87.59 | 88.83 |
来源 | 方差和 | 自由度 | 均方 | F值 | p值 |
---|---|---|---|---|---|
1.40 | 0.9963 | 0.9916 | 0.9524 | 76.06 | 46.909 |
模型 | 3731.88 | 9 | 414.65 | 210.86 | <0.0001 |
A | 228.23 | 1 | 228.23 | 116.06 | <0.0001 |
B | 1190.23 | 1 | 1190.23 | 605.25 | <0.0001 |
C | 1357.99 | 1 | 1357.99 | 690.55 | <0.0001 |
AB | 45.36 | 1 | 45.36 | 23.07 | 0.0020 |
AC | 183.87 | 1 | 183.87 | 93.50 | <0.0001 |
BC | 8.97 | 1 | 8.97 | 4.56 | 0.0701 |
A2 | 29.00 | 1 | 29.00 | 14.75 | 0.0064 |
B2 | 328.44 | 1 | 328.44 | 167.02 | <0.0001 |
C2 | 299.54 | 1 | 299.54 | 152.32 | <0.0001 |
残差 | 13.77 | 7 | 1.97 | ||
失拟项 | 10.86 | 3 | 3.62 | 4.98 | 0.0775 |
纯误差 | 2.91 | 4 | 0.73 | ||
相关总计 | 3745.65 | 16 | |||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
Table 5 Variance and significance analysis of the model
来源 | 方差和 | 自由度 | 均方 | F值 | p值 |
---|---|---|---|---|---|
1.40 | 0.9963 | 0.9916 | 0.9524 | 76.06 | 46.909 |
模型 | 3731.88 | 9 | 414.65 | 210.86 | <0.0001 |
A | 228.23 | 1 | 228.23 | 116.06 | <0.0001 |
B | 1190.23 | 1 | 1190.23 | 605.25 | <0.0001 |
C | 1357.99 | 1 | 1357.99 | 690.55 | <0.0001 |
AB | 45.36 | 1 | 45.36 | 23.07 | 0.0020 |
AC | 183.87 | 1 | 183.87 | 93.50 | <0.0001 |
BC | 8.97 | 1 | 8.97 | 4.56 | 0.0701 |
A2 | 29.00 | 1 | 29.00 | 14.75 | 0.0064 |
B2 | 328.44 | 1 | 328.44 | 167.02 | <0.0001 |
C2 | 299.54 | 1 | 299.54 | 152.32 | <0.0001 |
残差 | 13.77 | 7 | 1.97 | ||
失拟项 | 10.86 | 3 | 3.62 | 4.98 | 0.0775 |
纯误差 | 2.91 | 4 | 0.73 | ||
相关总计 | 3745.65 | 16 | |||
离散系数 | R2 | 校正R2 | 预测R2 | 方差 | 精密度 |
催化剂 | 温度/℃ | 醇酯比 | 催化剂投加量 | 时间/min | 反应压力/atm | SBAC转化率/% | 文献 |
---|---|---|---|---|---|---|---|
A-36 | 60 | 2∶1 | — | 120 | 1 | 77 | [ |
NKC-9 | 65 | 3∶1 | 20%(MeOH) | 160 | 1 | 50 | [ |
Hβ-20%-200 | 95 | 4∶1 | 3 g | — | 15 | 49.6 | [ |
[C8VIm][OH] | 68 | 3.5∶1 | 5%(SBAC) | 80 | 1 | 82.3 | [ |
[HSO3Pmim]HSO4 | 90 | 3.5∶1 | 2%(MeOH+SBAC) | 300 | 1 | 90 | [ |
[HSO3-PMIM]P-TSA | — | 4∶1 | 1% | — | 6 | 75 | [ |
[Ch][IM] | 44.46 | 4.42∶1 | 8.91%(MeOH+SBAC) | 60 | 1 | 93.95 | 本工作 |
Table 6 Reported catalysts in transesterification of sec-butyl acetate
催化剂 | 温度/℃ | 醇酯比 | 催化剂投加量 | 时间/min | 反应压力/atm | SBAC转化率/% | 文献 |
---|---|---|---|---|---|---|---|
A-36 | 60 | 2∶1 | — | 120 | 1 | 77 | [ |
NKC-9 | 65 | 3∶1 | 20%(MeOH) | 160 | 1 | 50 | [ |
Hβ-20%-200 | 95 | 4∶1 | 3 g | — | 15 | 49.6 | [ |
[C8VIm][OH] | 68 | 3.5∶1 | 5%(SBAC) | 80 | 1 | 82.3 | [ |
[HSO3Pmim]HSO4 | 90 | 3.5∶1 | 2%(MeOH+SBAC) | 300 | 1 | 90 | [ |
[HSO3-PMIM]P-TSA | — | 4∶1 | 1% | — | 6 | 75 | [ |
[Ch][IM] | 44.46 | 4.42∶1 | 8.91%(MeOH+SBAC) | 60 | 1 | 93.95 | 本工作 |
1 | Wu T Z, Zhang Q Q, Xin H, et al. Study on the selective separation of methanol and methyl ethyl ketone from the azeotropic system using ionic liquids and their separation mechanism[J]. Journal of Molecular Liquids, 2021, 343: 117571. |
2 | 孙李林. 乙酸仲丁酯深加工方向国内专利技术综述[J]. 山东化工, 2021, 50(24): 67-68. |
Sun L L. Summary of domestic patent technology for deep processing direction of sec-butyl acetate[J]. Shandong Chemical Industry, 2021, 50(24): 67-68. | |
3 | 吴育爱. 正丁烯水合法制甲乙酮装置运行分析[J]. 石化技术与应用, 2006, 24(4): 293-296. |
Wu Y A. Running analysis of preparing methyl ethyl ketone from n-butylene hydration[J]. Petrochemical Technology & Application, 2006, 24(4): 293-296. | |
4 | 徐浩, 李洋, 夏成康, 等. 吡啶硫酸氢盐离子液体催化甘油与乙酸酯化反应动力学[J]. 化工学报, 2020, 71(11): 5178-5187. |
Xu H, Li Y, Xia C K, et al. Kinetics of esterification of glycerol with acetic acid catalyzed by pyridine bisulfate ionic liquid[J]. CIESC Journal, 2020, 71(11): 5178-5187. | |
5 | Fang D R, Ren W Z, Lv H Y, et al. Partial amination of cationic exchange resins and its application in the hydration of butene[J]. Journal of Natural Gas Chemistry, 2012, 21(3): 314-318. |
6 | 孙培永, 贾长斌, 罗学清, 等. 载体改性对Cu/B/Al2O3结构及其催化醋酸仲丁酯加氢性能的影响[J]. 化工学报, 2016, 67(4): 1313-1323. |
Sun P Y, Jia C B, Luo X Q, et al. Effects of support modifications on catalyst structure and catalytic performance for hydrogenation of sec-butyl acetate over Cu/B/Al2O3 catalyst [J]. CIESC Journal, 2016, 67(4): 1313-1323. | |
7 | 吴承明, 任伟峰, 周佳, 等. 仲丁醇合成工艺研究进展[J]. 化学工程师, 2016, 30(7): 61-65. |
Wu C M, Ren W F, Zhou J, et al. Research progress in the synthetic technology of sec-butanol[J]. Chemical Engineer, 2016, 30(7): 61-65. | |
8 | Xu H J, Wang X G, Zou Y M, et al. Exergy, economic and environmental assessment of sec-butyl acetate hydrolysis to sec-butyl alcohol using a combined reaction and extractive distillation system[J]. Fuel, 2021, 286: 119372. |
9 | Li X, Wang H X, Sun P Y, et al. Boron-promoted Cu/ZrO2 catalysts for hydrogenation of sec-butyl acetate: structural evolution and catalytic performance[J]. Molecular Catalysis, 2020, 482: 110698. |
10 | Sun P Y, Wang H X, Luo X Q, et al. Sintering-resistant Cu/B/Ca/Al2O3 catalysts for durable hydrogenation of sec-butyl acetate to 2-butanol and ethanol[J]. Journal of Industrial and Engineering Chemistry, 2019, 74: 86-95. |
11 | Wang H X, Wu C M, Bu X W, et al. A benign preparation of sec-butanol via transesterification from sec-butyl acetate using the acidic imidazolium ionic liquids as catalysts[J]. Chemical Engineering Journal, 2014, 246: 366-372. |
12 | Qiu T, Tang W L, Li C G, et al. Reaction kinetics for synthesis of sec-butyl alcohol catalyzed by acid-functionalized ionic liquid[J]. Chinese Journal of Chemical Engineering, 2015, 23(1): 106-111. |
13 | Bora A P, Gupta D P, Durbha K S. Sewage sludge to bio-fuel: a review on the sustainable approach of transforming sewage waste to alternative fuel[J]. Fuel, 2020, 259: 116262. |
14 | Santos S, Puna J, Gomes J. A review on bio-based catalysts (immobilized enzymes) used for biodiesel production[J]. Energies, 2020, 13(11): 3013. |
15 | Abdullah S H Y S, Hanapi N H M, Azid A, et al. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1040-1051. |
16 | Samuilov A Y, Korshunov M V, Samuilov Y D. Transesterification of diethyl carbonate with methanol catalyzed by sodium methoxide[J]. Russian Journal of Organic Chemistry, 2019, 55(9): 1338-1343. |
17 | 黄振东, 王睿, 于美青. KOH/ZrO2催化制备生物柴油新工艺[J]. 化工学报, 2016, 67(S2): 176-183. |
Huang Z D, Wang R, Yu M Q. New technique of biodiesel preparation catalyzed by KOH/ZrO2 [J]. CIESC Journal, 2016, 67(S2): 176-183. | |
18 | Ong H C, Tiong Y W, Goh B H H, et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: opportunities and challenges[J]. Energy Conversion and Management, 2021, 228: 113647. |
19 | Qiao Y X, Ma W B, Theyssen N, et al. Temperature-responsive ionic liquids: fundamental behaviors and catalytic applications[J]. Chemical Reviews, 2017, 117(10): 6881-6928. |
20 | Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils[J]. Journal of Bioscience and Bioengineering, 2001, 92(5): 405-416. |
21 | Steinrück H P, Wasserscheid P. Ionic liquids in catalysis[J]. Catalysis Letters, 2015, 145(1): 380-397. |
22 | Ruesgas-Ramón M, Figueroa-Espinoza M C, Durand E. Application of deep eutectic solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities[J]. Journal of Agricultural and Food Chemistry, 2017, 65(18): 3591-3601. |
23 | Liu P, Hao J W, Mo L P, et al. Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions[J]. RSC Advances, 2015, 5(60): 48675-48704. |
24 | Paiva A, Craveiro R, Aroso I, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071. |
25 | Gadilohar B L, Shankarling G S. Choline based ionic liquids and their applications in organic transformation[J]. Journal of Molecular Liquids, 2017, 227: 234-261. |
26 | Zhu A L, Feng W L, Li Z Y, et al. Cleaner enzymatic production of biodiesel with easy separation procedures triggered by a biocompatible hydrophilic ionic liquid[J]. Green Chemistry, 2020, 22(6): 1944-1951. |
27 | De C Y, Lu B, Lv H, et al. One-pot synthesis of dimethyl carbonate from methanol, propylene oxide and carbon dioxide over supported choline hydroxide/MgO[J]. Catalysis Letters, 2009, 128(3): 459-464. |
28 | Fan M M, Huang J L, Yang J, et al. Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst[J]. Applied Energy, 2013, 108: 333-339. |
29 | Fan M M, Yang J, Jiang P P, et al. Synthesis of novel dicationic basic ionic liquids and its catalytic activities for biodiesel production[J]. RSC Advances, 2013, 3(3): 752-756. |
30 | 陆俊凤, 孙怀宇, 王艳磊, 等. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
Lu J F, Sun H Y, Wang Y L, et al. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds[J]. CIESC Journal, 2023, 74(9): 3665-3680. | |
31 | Ullah Z, Khan A S, Muhammad N, et al. A review on ionic liquids as perspective catalysts in transesterification of different feedstock oil into biodiesel[J]. Journal of Molecular Liquids, 2018, 266: 673-686. |
32 | 张雅婷, 熊文杰, 赵天翔, 等. 咪唑类离子液体混合物用于二氧化硫高效吸收[J]. 化工学报, 2020, 71(11): 5035-5042. |
Zhang Y T, Xiong W J, Zhao T X, et al. High capacity absorption of SO2 using imidazole ionic liquid mixtures[J]. CIESC Journal, 2020, 71(11): 5035-5042. | |
33 | Wu C M, Gao Z Y, Wang Y, et al. Efficient synthesis of sec-butanol from sec-butyl acetate under mild conditions with the basic ionic liquid catalysts[J]. Chemical Engineering Journal, 2018, 354: 599-605. |
34 | 常飞琴. 纳米固体碱催化制备生物柴油的研究[D]. 西安: 西安石油大学, 2017. |
Chang F Q. Study on preparation of biodiesel catalyzed by nano-solid alkali[D]. Xi'an: Xi'an Shiyou University, 2017. | |
35 | 翟明路. 钙基固体碱催化碳酸丙烯酯与甲醇酯交换制备碳酸二甲酯研究[D]. 开封: 河南大学, 2020. |
Zhai M L. Study on preparation of dimethyl carbonate by transesterification of propylene carbonate with methanol catalyzed by calcium-based solid base[D]. Kaifeng: Henan University, 2020. | |
36 | 郑佳丽, 李志会, 赵新强, 等. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
Zheng J L, Li Z H, Zhao X Q, et al. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran[J]. CIESC Journal, 2023, 74(9): 3708-3715. | |
37 | 蔡东仁, 詹国武, 肖静冉, 等. 磺酸功能化离子液体的合成及催化制备生物柴油应用[J]. 化工学报, 2021, 72(7): 3601-3612. |
Cai D R, Zhan G W, Xiao J R, et al. Synthesis of sulfonic acid functionalized ionic liquids for catalytic applications in biodiesel production[J]. CIESC Journal, 2021, 72(7): 3601-3612. | |
38 | Yang J B, Zeng T, Cai D R, et al. Supported ionic liquids as green catalyst for 2-butanol synthesis from transesterification of sec-butyl acetate[J]. Asia-Pacific Journal of Chemical Engineering, 2016, 11(6): 901-909. |
39 | Liu G H, Yang J Y, Xu X R. Synthesis of hydrotalcites from waste steel slag with [bmim]OH intercalated for the transesterification of glycerol carbonate[J]. Molecules, 2020, 25(19): 4355. |
40 | Arumugam S, Chengareddy P, Tamilarasan A, et al. RSM and crow search algorithm-based optimization of ultrasonicated transesterification process parameters on synthesis of polyol ester-based biolubricant[J]. Arabian Journal for Science and Engineering, 2019, 44(6): 5535-5548. |
41 | 石象鹏, 湛明, 余良军, 等. 酯交换法制备仲丁醇的关键技术研究[J]. 广东化工, 2019, 46(7): 69-70, 86. |
Shi X P, Zhan M, Yu L J, et al. Research on sec-butyl alcohol production by transesterification[J]. Guangdong Chemical Industry, 2019, 46(7): 69-70, 86. | |
42 | 李柏春, 高永宽, 王晓文, 等. 酯交换法合成仲丁醇的动力学研究[J]. 化学工程, 2016, 44(9): 49-54. |
Li B C, Gao Y K, Wang X W, et al. Reaction kinetics of synthesized sec-butyl alcohol by trans-esterification[J]. Chemical Engineering (China), 2016, 44(9): 49-54. | |
43 | 李飞杰. Hβ分子筛的改性及其催化酯交换制备仲丁醇的研究[D]. 北京: 中国石油大学(北京), 2018. |
Li F J. Study on modification of Hβ molecular sieve and its catalytic transesterification to prepare sec-butanol[D]. Beijing: China University of Petroleum, 2018. | |
44 | 罗金平. 功能化离子液体的合成及在酯交换中的应用[D]. 天津: 河北工业大学, 2021. |
Luo J P. Synthesis of functionalized ionic liquids and its application in transesterification[D]. Tianjin: Hebei University of Technology, 2021. | |
45 | 吴承明. 基于酸性离子液体合成仲丁醇反应精馏过程研究[D]. 福州: 福州大学, 2014. |
Wu C M. Study on reactive distillation process of synthesizing sec-butanol based on acidic ionic liquid[D]. Fuzhou: Fuzhou University, 2014. | |
46 | Luo H, Zhai Z, Fan W Y, et al. Monoacylglycerol synthesis by glycerolysis of soybean oil using alkaline ionic liquid[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 4923-4928. |
47 | Cui X B, Cai J L, Zhang Y, et al. Kinetics of transesterification of methyl acetate and n-butanol catalyzed by ionic liquid[J]. Industrial & Engineering Chemistry Research, 2011, 50(20): 11521-11527. |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[5] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
[6] | Lizhi WANG, Qiancheng HANG, Yeling ZHENG, Yan DING, Jiaji CHEN, Qing YE, Jinlong LI. Separation of methyl propionate + methanol azeotrope using ionic liquid entrainers [J]. CIESC Journal, 2023, 74(9): 3731-3741. |
[7] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[8] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[9] | Shaoqi YANG, Shuheng ZHAO, Lungang CHEN, Chenguang WANG, Jianjun HU, Qing ZHOU, Longlong MA. Hydrodeoxygenation of lignin-derived compounds to alkanes in Raney Ni-protic ionic liquid system [J]. CIESC Journal, 2023, 74(9): 3697-3707. |
[10] | Xin YANG, Xiao PENG, Kairu XUE, Mengwei SU, Yan WU. Preparation of molecularly imprinted-TiO2 and its properties of photoelectrocatalytic degradation of solubilized PHE [J]. CIESC Journal, 2023, 74(8): 3564-3571. |
[11] | Feifei YANG, Shixi ZHAO, Wei ZHOU, Zhonghai NI. Sn doped In2O3 catalyst for selective hydrogenation of CO2 to methanol [J]. CIESC Journal, 2023, 74(8): 3366-3374. |
[12] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[13] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[14] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[15] | Yajie YU, Jingru LI, Shufeng ZHOU, Qingbiao LI, Guowu ZHAN. Construction of nanomaterial and integrated catalyst based on biological template: a review [J]. CIESC Journal, 2023, 74(7): 2735-2752. |
Viewed | ||||||
Full text 396
|
|
|||||
Abstract |
|
|||||