CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 395-411.DOI: 10.11949/0438-1157.20230900
• Reviews and monographs • Previous Articles Next Articles
Baofeng WANG(), Shugao WANG, Fangqin CHENG()
Received:
2023-08-31
Revised:
2023-12-12
Online:
2024-04-10
Published:
2024-02-25
Contact:
Fangqin CHENG
通讯作者:
程芳琴
作者简介:
王宝凤(1977—),女,博士,教授,wangbaofeng@sxu.edu.cn
基金资助:
CLC Number:
Baofeng WANG, Shugao WANG, Fangqin CHENG. Progress in preparation and CO2 adsorption properties of solid waste-based sulfur-doped porous carbon materials[J]. CIESC Journal, 2024, 75(2): 395-411.
王宝凤, 王术高, 程芳琴. 固废基硫掺杂多孔炭材料制备及其对CO2吸附性能研究进展[J]. 化工学报, 2024, 75(2): 395-411.
Add to citation manager EndNote|Ris|BibTeX
制备方法 | 反应温度/℃ | 优势 | 不足之处 | 硫掺杂多孔炭特性 | 文献 |
---|---|---|---|---|---|
热解法 | 300~1000 | 操作简单、成本低 | 所需温度高、能耗大 | 掺杂量可控 | [ |
水热碳化法 | 160~280 | 绿色环保、原料适用广 | 反应时间长、存在高压风险 | 碳化程度低;比表面积较小 | [ |
活化法 | 600~1200 | 活化剂可选、制备成本低 | 腐蚀设备、污染环境 | 表面官能团丰富;比表面积大 | [ |
后处理掺杂法 | 取决于掺杂步骤 | 适用范围广、掺杂量易控 | 需要额外工艺、步骤复杂 | 掺杂不均匀 | [ |
Table 1 Comparison of preparation methods of sulfur-doped porous carbon materials
制备方法 | 反应温度/℃ | 优势 | 不足之处 | 硫掺杂多孔炭特性 | 文献 |
---|---|---|---|---|---|
热解法 | 300~1000 | 操作简单、成本低 | 所需温度高、能耗大 | 掺杂量可控 | [ |
水热碳化法 | 160~280 | 绿色环保、原料适用广 | 反应时间长、存在高压风险 | 碳化程度低;比表面积较小 | [ |
活化法 | 600~1200 | 活化剂可选、制备成本低 | 腐蚀设备、污染环境 | 表面官能团丰富;比表面积大 | [ |
后处理掺杂法 | 取决于掺杂步骤 | 适用范围广、掺杂量易控 | 需要额外工艺、步骤复杂 | 掺杂不均匀 | [ |
样品 | 硫含量/%(质量分数) | 比表面积/(cm3/g) | 总孔容/(cm3/g) | 测试条件 | CO2最大捕集量/(mmol/g) | 文献 |
---|---|---|---|---|---|---|
SCEMC | 6.56 | 1627 | 0.90 | 25℃,1 bar | 2.46 | [ |
CSI-800 ox | 7.80 | 1893 | 1.16 | 20℃,1 bar | 2.90 | [ |
CS-1 | 8.2 | 2865 | 2.3 | 25℃,1 bar | 2.06 | [ |
S-CX-4-700-KOH | 1.23 | 2051 | 1.10 | 0℃,1 bar | 5.37 | [ |
NSCS-4-700 | 2.93 | 1757 | 0.813 | 25℃,8bar | 11.68 | [ |
CS2 | 2.4 | 979 | 0.47 | 0℃,1 bar | 5.63 | [ |
NSPC-1-650 | 1.48 | 1927 | 0.36 | 25℃,5 bar | 5.56 | [ |
C3800 | 4.42 | 1631 | 1.08 | 25℃,20 bar | 12.9 | [ |
SNPC-F127-1 | 0.14 | 1512 | 0.71 | 25℃,1 bar | 4.29 | [ |
NSOPC-1 | 0.26 | 1292 | 0.68 | 25℃,1 bar | 3.88 | [ |
PFC-S | 2.89 | 488 | 0.36 | 30℃,0.125 bar | 1.25 | [ |
LS-3 | 1 | 3626 | 1.741 | 25℃,757 Torr | 10.89 | [ |
NSDCS2700 | 4.4 | 2125 | 0.97 | 0℃,1 bar | 5.6 | [ |
GT-550-3 | 1.21 | 1213 | 0.48 | 25℃,1 bar | 5.54 | [ |
NSPC-2-500 | 1.63 | 1131 | 0.62 | 25℃,1 bar | 3.73 | [ |
HS-550-3 | 0.42 | 1600 | 0.61 | 25℃,1 bar | 4.30 | [ |
WT-550-3 | 0.45 | 1729 | 0.69 | 25℃,1 bar | 4.31 | [ |
NSAC-(1∶1)500(1) | 0.2 | 1800 | 0.98 | 0℃,1 bar | 7.02 | [ |
PK3800 | 6.16 | 1673 | 0.76 | 25℃,20 bar | 17.29 | [ |
NSPC-600-2.5 | 0.71 | 1412 | 0.77 | 25℃,1 bar | 5.51 | [ |
ZTC-NS | 1.5 | 1006.5 | 0.556 | 25℃,1 bar | 6.03 | [ |
S-PC-1 | 1.67 | 997 | 0.46 | 0℃,1 bar | 5.13 | [ |
SSA1000 | 8.4 | 658.08 | 0.29 | 25℃,0.15 bar | 0.95 | [ |
Table 2 Summary of CO2 adsorption performane of different sulfur-doped porous carbons
样品 | 硫含量/%(质量分数) | 比表面积/(cm3/g) | 总孔容/(cm3/g) | 测试条件 | CO2最大捕集量/(mmol/g) | 文献 |
---|---|---|---|---|---|---|
SCEMC | 6.56 | 1627 | 0.90 | 25℃,1 bar | 2.46 | [ |
CSI-800 ox | 7.80 | 1893 | 1.16 | 20℃,1 bar | 2.90 | [ |
CS-1 | 8.2 | 2865 | 2.3 | 25℃,1 bar | 2.06 | [ |
S-CX-4-700-KOH | 1.23 | 2051 | 1.10 | 0℃,1 bar | 5.37 | [ |
NSCS-4-700 | 2.93 | 1757 | 0.813 | 25℃,8bar | 11.68 | [ |
CS2 | 2.4 | 979 | 0.47 | 0℃,1 bar | 5.63 | [ |
NSPC-1-650 | 1.48 | 1927 | 0.36 | 25℃,5 bar | 5.56 | [ |
C3800 | 4.42 | 1631 | 1.08 | 25℃,20 bar | 12.9 | [ |
SNPC-F127-1 | 0.14 | 1512 | 0.71 | 25℃,1 bar | 4.29 | [ |
NSOPC-1 | 0.26 | 1292 | 0.68 | 25℃,1 bar | 3.88 | [ |
PFC-S | 2.89 | 488 | 0.36 | 30℃,0.125 bar | 1.25 | [ |
LS-3 | 1 | 3626 | 1.741 | 25℃,757 Torr | 10.89 | [ |
NSDCS2700 | 4.4 | 2125 | 0.97 | 0℃,1 bar | 5.6 | [ |
GT-550-3 | 1.21 | 1213 | 0.48 | 25℃,1 bar | 5.54 | [ |
NSPC-2-500 | 1.63 | 1131 | 0.62 | 25℃,1 bar | 3.73 | [ |
HS-550-3 | 0.42 | 1600 | 0.61 | 25℃,1 bar | 4.30 | [ |
WT-550-3 | 0.45 | 1729 | 0.69 | 25℃,1 bar | 4.31 | [ |
NSAC-(1∶1)500(1) | 0.2 | 1800 | 0.98 | 0℃,1 bar | 7.02 | [ |
PK3800 | 6.16 | 1673 | 0.76 | 25℃,20 bar | 17.29 | [ |
NSPC-600-2.5 | 0.71 | 1412 | 0.77 | 25℃,1 bar | 5.51 | [ |
ZTC-NS | 1.5 | 1006.5 | 0.556 | 25℃,1 bar | 6.03 | [ |
S-PC-1 | 1.67 | 997 | 0.46 | 0℃,1 bar | 5.13 | [ |
SSA1000 | 8.4 | 658.08 | 0.29 | 25℃,0.15 bar | 0.95 | [ |
1 | Pang Z F, Jiang S K, Zhu C Y, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
2 | Eskandari M, Khaksar S A N, Keshavarz P. CO2 absorption using benzylamine as absorbent and promoter in a hollow fiber membrane contactor: a numerical study[J]. Journal of CO2 Utilization, 2022, 66: 102287. |
3 | Yuan J C, Wang Y, Tang M F, et al. Preparation of N, O co-doped carbon nanotubes and activated carbon composites with hierarchical porous structure for CO2 adsorption by coal pyrolysis[J]. Fuel, 2023, 333: 126465. |
4 | Dehkordi S S R, Delavar Q, Ebrahim H A, et al. CO2 adsorption by coal-based activated carbon modified with sodium hydroxide[J]. Materials Today Communications, 2022, 33: 104776. |
5 | Liu B C, Qiao Y S, Li Q, et al. CO2 separation from CO2-EOR associated gas using hollower fiber membranes: a process design and simulation study[J]. Journal of Natural Gas Science and Engineering, 2022, 100: 104451. |
6 | Tu Z H, Shi M Z, Zhang X M, et al. Selective membrane separation of CO2 using novel epichlorohydrin-amine-based crosslinked protic ionic liquids: crosslinking mechanism and enhanced salting-out effect[J]. Journal of CO2 Utilization, 2021, 46: 101473. |
7 | Shen M H, Tong L G, Yin S W, et al. Cryogenic technology progress for CO2 capture under carbon neutrality goals: a review[J]. Separation and Purification Technology, 2022, 299: 121734. |
8 | Yousef A M, El-Maghlany W M, Eldrainy Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351. |
9 | Shi J S, Cui H, Xu J G, et al. Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption[J]. Fuel, 2021, 305: 121505. |
10 | Yan H Y, Zhang G J, Xu Y, et al. High CO2 adsorption on amine-functionalized improved macro-/ mesoporous multimodal pore silica[J]. Fuel, 2022, 315: 123195. |
11 | Wawrzyńczak D, Panowski M, Majchrzak-Kucęba I. Possibilities of CO2 purification coming from oxy-combustion for enhanced oil recovery and storage purposes by adsorption method on activated carbon[J]. Energy, 2019, 180: 787-796. |
12 | Wei R P, Dai X C, Shi F. Enhanced CO2 adsorption on nitrogen-doped carbon materials by salt and base co-activation method[J]. Materials, 2019, 12(8): 1207. |
13 | Liu H R, Wang S Y, Wang X Q, et al. A stable solid amine adsorbent with interconnected open-cell structure for rapid CO2 adsorption and CO2/CH4 separation[J]. Energy, 2022, 258: 124899. |
14 | Yang H Y, Wang X Z, Liu J, et al. Amine-impregnated polymeric resin with high CO2 adsorption capacity for biogas upgrading[J]. Chemical Engineering Journal, 2022, 430: 132899. |
15 | Wang Y S, Du T, Qiu Z Y, et al. CO2 adsorption on polyethylenimine-modified ZSM-5 zeolite synthesized from rice husk ash[J]. Materials Chemistry and Physics, 2018, 207: 105-113. |
16 | Kodasma R, Fermoso J, Sanna A. Li-LSX-zeolite evaluation for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2019, 358: 1351-1362. |
17 | Karka S, Kodukula S, Nandury S V, et al. Polyethylenimine-modified zeolite 13X for CO2 capture: adsorption and kinetic studies[J]. ACS Omega, 2019, 4(15): 16441-16449. |
18 | Danish M, Parthasarthy V, Al Mesfer M K. CO2 capture by low-cost date pits-based activated carbon and silica gel[J]. Materials, 2021, 14(14): 3885. |
19 | Sladekova K, Campbell C, Grant C, et al. The effect of atomic point charges on adsorption isotherms of CO2 and water in metal organic frameworks[J]. Adsorption, 2020, 26(5): 663-685. |
20 | 张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5): 1563-1570. |
Zhang S Y, Liu H, Liu P F, et al. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC Journal, 2014, 65(5): 1563-1570. | |
21 | Khan J, Iqbal N, Asghar A, et al. Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture[J]. Materials Research Express, 2019, 6(10): 105539. |
22 | Shin G J, Rhee K, Park S J. Improvement of CO2 capture by graphite oxide in presence of polyethylenimine[J]. International Journal of Hydrogen Energy, 2016, 41(32): 14351-14359. |
23 | Tiwari D, Goel C, Bhunia H, et al. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture[J]. Journal of Environmental Management, 2017, 197: 415-427. |
24 | Chiang Y C, Chin W T, Huang C C. The application of hollow carbon nanofibers prepared by electrospinning to carbon dioxide capture[J]. Polymers, 2021, 13(19): 3275. |
25 | Singh G, Lakhi K S, Sil S, et al. Biomass derived porous carbon for CO2 capture[J]. Carbon, 2019, 148: 164-186. |
26 | Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(22): 11379. |
27 | Hao G P, Mondin G, Zheng Z K, et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture[J]. Angewandte Chemie International Edition, 2015, 54(6): 1941-1945. |
28 | Oschatz M, Antonietti M. A search for selectivity to enable CO2 capture with porous adsorbents[J]. Energy & Environmental Science, 2018, 11(1): 57-70. |
29 | Tang S Y, Wang Y S, Yuan Y F, et al. Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting[J]. New Carbon Materials, 2022, 37(1): 237-244. |
30 | Zhu W F, Wang Y Q, Yao F, et al. One-pot synthesis of N-doped petroleum coke-based microporous carbon for high-performance CO2 adsorption and supercapacitors[J]. Journal of Environmental Sciences (China), 2024, 139: 93-104. |
31 | Sun H Q, Zhou G L, Wang Y X, et al. A new metal-free carbon hybrid for enhanced photocatalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16745-16754. |
32 | Wang Y F, Suo Y G, Xu Y S, et al. Enhancing CO2 adsorption performance of porous nitrogen-doped carbon materials derived from ZIFs: insights into pore structure and surface chemistry[J]. Separation and Purification Technology, 2024, 335: 126117. |
33 | Luo J Y, Liu B G, Shi R, et al. The effects of nitrogen functional groups and narrow micropore sizes on CO2 adsorption onto N-doped biomass-based porous carbon under different pressure[J]. Microporous and Mesoporous Materials, 2021, 327: 111404. |
34 | Cui H M, Xu J G, Shi J S, et al. Synthesis of sulfur doped carbon from dipotassium anthraquinone-1, 8-disulfonate for CO2 adsorption[J]. Journal of CO2 Utilization, 2021, 50: 101582. |
35 | Zhang C C, Huang M Y, Zhong S, et al. Controllable construction of boron and nitrogen co-doping honeycomb porous carbon as promising materials for CO2 capture and supercapacitors[J]. Journal of Energy Storage, 2022, 55: 105687. |
36 | Wu R, Hang Y P, Li J H, et al. Preparation of biomass-derived phosphorus-doped microporous carbon material and its application in dye adsorption and CO2 capture[J]. Surface and Interface Analysis, 2022, 54(8): 881-891. |
37 | Medha S, Romisher Z, van Bramer S, et al. Enhanced adsorption of perfluorooctanesulfonic acid (PFOS) in fluorine doped mesoporous carbon: experiment and simulation[J]. Carbon, 2024, 218: 118745. |
38 | dos Reis G S, Thivet J, Laisné E, et al. Synthesis of novel mesoporous selenium-doped biochar with high-performance sodium diclofenac and reactive orange 16 dye removals[J]. Chemical Engineering Science, 2023, 281: 119129. |
39 | Cao Y L, Mao S J, Li M M, et al. Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping[J]. ACS Catalysis, 2017, 7(12): 8090-8112. |
40 | Wang W, Wang P P, Wu C, et al. Adsorption of acetochlor-contaminated water systems using novel P-doped biochar: effects, application, and mechanism[J]. Chemosphere, 2024, 350: 141027. |
41 | Ye J Q, Zhao H Q, Song W, et al. Enhanced electronic conductivity and sodium-ion adsorption in N/S co-doped ordered mesoporous carbon for high-performance sodium-ion battery anode[J]. Journal of Power Sources, 2019, 412: 606-614. |
42 | Ma G X, Ning G Q, Wei Q. S-doped carbon materials: synthesis, properties and applications[J]. Carbon, 2022, 195: 328-340. |
43 | Paraknowitsch J P, Thomas A, Schmidt J. Microporous sulfur-doped carbon from thienyl-based polymer network precursors[J]. Chemical Communications, 2011, 47(29): 8283-8285. |
44 | Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energy & Environmental Science, 2013, 6(10): 2839-2855. |
45 | Li M, Wang B, Yang M Q, et al. Promoting mercury removal from desulfurization slurry via S-doped carbon nitride/graphene oxide 3D hierarchical framework[J]. Separation and Purification Technology, 2020, 239: 116515. |
46 | Liu Y, Wang J X, Wang T, et al. Removing mercury from flue gas by sulfur-doped zeolite-templated carbon: synthesize and adsorption mechanism[J]. Separation and Purification Technology, 2022, 294: 121228. |
47 | Wang M W, Su K M, Zhang M L, et al. Advanced trifunctional electrocatalysis with Cu-, N-, S-doped defect-rich porous carbon for rechargeable Zn-air batteries and self-driven water splitting[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13324-13336. |
48 | Balasubramanian P, Jansirani A, He S B, et al. Rational construction of N, S-doped carbon wrapped MnFe2O4 nanospheres with copious oxygen deficiency as extremely efficient and robust electrocatalyst for urea electrocatalysis[J]. Journal of Power Sources, 2021, 494: 229757. |
49 | Liang Z J, Peng Y H, Zhang X, et al. Sulfur-doped CMK-5 with expanded lattice for high-performance lithium ion batteries[J]. Chinese Chemical Letters, 2023, 34(7): 108054. |
50 | Zhao L, Ning G Q, Zhang S C. Green synthesis of S-doped carbon nanotubes via gaseous post-treatment and their application as conductive additive in Li ion batteries[J]. Carbon, 2021, 179: 425-434. |
51 | Huang Z Y, Jiang J J, Li W Y, et al. Stabilizing sulfur doped manganese oxide active sites with phosphorus doped hierarchical nested square carbon for efficient asymmetric supercapacitor[J]. Chemical Engineering Journal, 2023, 468: 143574. |
52 | Zhao G Y, Yu D F, Zhang H, et al. Sulphur-doped carbon nanosheets derived from biomass as high-performance anode materials for sodium-ion batteries[J]. Nano Energy, 2020, 67: 104219. |
53 | Yang X Y, Wang B F, Song X T, et al. Co-hydrothermal carbonization of sewage sludge and coal slime with sulfuric acid for N, S doped hydrochar[J]. Journal of Cleaner Production, 2022, 354: 131615. |
54 | Bai J L, Huang J M, Yu Q Y, et al. One-pot synthesis of self S-doped porous carbon for efficient CO2 adsorption[J]. Fuel Processing Technology, 2023, 244: 107700. |
55 | Wang H, Bo X, Zhang Y F, et al. Sulfur-doped ordered mesoporous carbon with high electrocatalytic activity for oxygen reduction[J]. Electrochimica Acta, 2013, 108: 404-411. |
56 | Yang S B, Zhi L J, Tang K, et al. Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640. |
57 | Poh H L, Šimek P, Sofer Z, et al. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas[J]. ACS Nano, 2013, 7(6): 5262-5272. |
58 | Aristote N T, Liu C, Deng X L, et al. Sulfur-doping biomass based hard carbon as high performance anode material for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2022, 923: 116769. |
59 | Ren Q Q, Wu Z Y, Hu S, et al. Sulfur self-doped char with high specific capacitance derived from waste tire: effects of pyrolysis temperature[J]. The Science of the Total Environment, 2020, 741: 140193. |
60 | Hegazy M A, Mohammedy M M, Dhmees A S. Phosphorous and sulfur doped asphaltene derived activated carbon for supercapacitor application[J]. Journal of Energy Storage, 2021, 44: 103331. |
61 | Wohlgemuth S A, Vilela F, Titirici M M, et al. A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres[J]. Green Chemistry, 2012, 14(3): 741-749. |
62 | 郑明涛, 肖勇, 张浩然, 等. 单分散掺硫碳微球的水热制备及其表征[J]. 无机化学学报, 2013, 29(7): 1391-1399. |
Zheng M T, Xiao Y, Zhang H R, et al. Hydrothermal synthesis and characterization of sulfur-doped carbon microspheres[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(7): 1391-1399. | |
63 | Liu S M, Cai Y J, Zhao X, et al. Sulfur-doped nanoporous carbon spheres with ultrahigh specific surface area and high electrochemical activity for supercapacitor[J]. Journal of Power Sources, 2017, 360: 373-382. |
64 | Hao E C, Liu W, Liu S, et al. Rich sulfur doped porous carbon materials derived from ginkgo leaves for multiple electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(5): 2204-2214. |
65 | Navarro R M, Peña M A, Fierro J L G. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass[J]. Chemical Reviews, 2007, 107(10): 3952-3991. |
66 | Shi J S, Yan N F, Cui H M, et al. Sulfur doped microporous carbons for CO2 adsorption[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 4605-4611. |
67 | Kim D W, Kil H S, Nakabayashi K, et al. Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model[J]. Carbon, 2017, 114: 98-105. |
68 | Contreras M S, Páez C A, Zubizarreta L, et al. A comparison of physical activation of carbon xerogels with carbon dioxide with chemical activation using hydroxides[J]. Carbon, 2010, 48(11): 3157-3168. |
69 | Horax K M, Bao S J, Wang M Q, et al. Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor[J]. Chinese Chemical Letters, 2017, 28(12): 2290-2294. |
70 | Demiral İ, Aydın Şamdan C, Demiral H. Production and characterization of activated carbons from pumpkin seed shell by chemical activation with ZnCl2 [J]. Desalination and Water Treatment, 2016, 57(6): 2446-2454. |
71 | Pang L Y, Zou B, Zou Y C, et al. A new route for the fabrication of corn starch-based porous carbon as electrochemical supercapacitor electrode material[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 26-33. |
72 | Peng H, Ma G F, Sun K J, et al. Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors[J]. Electrochimica Acta, 2016, 190: 862-871. |
73 | Mossfika E, Syukri S, Aziz H. Preparation of activated carbon from tea waste by NaOH activation as a supercapacitor material[J]. Journal of Aceh Physics Society, 2020, 9(2): 42-47. |
74 | Zhang C, Sun S Z, He S, et al. Direct air capture of CO2 by KOH-activated bamboo biochar[J]. Journal of the Energy Institute, 2022, 105: 399-405. |
75 | 苏文韬, 蔡铭, 车美红, 等. 由聚苯硫醚废料制备硫掺杂多孔碳处理含重金属废水[J]. 工业技术创新, 2022, 9(3): 83-90. |
Su W T, Cai M, Che M H, et al. Preparing the sulfur-doped porous carbon from polyphenylene sulfide waste to treat wastewater contained heavy metals[J]. Industrial Technology Innovation, 2022, 9(3): 83-90. | |
76 | Yaglikci S, Gokce Y, Yagmur E, et al. The performance of sulphur doped activated carbon supercapacitors prepared from waste tea[J]. Environmental Technology, 2020, 41(1): 36-48. |
77 | Bai J L, Huang J M, Jiang Q, et al. Synthesis and characterization of polyphenylene sulfide resin-derived S-doped porous carbons for efficient CO2 capture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 674: 131916. |
78 | Ren Q Q, Hu S, Li Q, et al. Treating waste tire to prepare high-yield sulfur-doped porous char via ZnCl2-KOH heat treatment method[J]. Journal of Cleaner Production, 2022, 372: 133672. |
79 | 王宝凤, 杨晓阳, 郭彦霞, 等. 一种硫氮原位掺杂多孔炭材料的制备方法: 115520864A[P]. 2022-12-27. |
Wang B F, Yang X Y, Guo Y X, et al. A preparation method for sulfur nitrogen in-situ doped porous carbon material: 115520864A[P]. 2022-12-27. | |
80 | Zhao G G, Zou G Q, Hou H S, et al. Sulfur-doped carbon employing biomass-activated carbon as a carrier with enhanced sodium storage behavior[J]. Journal of Materials Chemistry A, 2017, 5(46): 24353-24360. |
81 | de Yuso A M, de Fina M, Nita C, et al. Synthesis of sulfur-doped porous carbons by soft and hard templating processes for CO2 and H2 adsorption[J]. Microporous and Mesoporous Materials, 2017, 243: 135-146. |
82 | Bandosz T J, Ren T Z. Porous carbon modified with sulfur in energy related applications[J]. Carbon, 2017, 118: 561-577. |
83 | Saha D, Orkoulas G, Chen J H, et al. Adsorptive separation of CO2 in sulfur-doped nanoporous carbons: selectivity and breakthrough simulation[J]. Microporous and Mesoporous Materials, 2017, 241: 226-237. |
84 | Hu L, Lu Y, Zhang T W, et al. Ultramicroporous carbon through an activation-free approach for Li-S and Na-S batteries in carbonate-based electrolyte[J]. ACS Applied Materials & Interfaces, 2017, 9(16): 13813-13818. |
85 | Wang H Z, Guo W Q, Liu B H, et al. Sludge-derived biochar as efficient persulfate activators: sulfurization-induced electronic structure modulation and disparate nonradical mechanisms[J]. Applied Catalysis B: Environmental, 2020, 279: 119361. |
86 | Bear J C, McGettrick J D, Parkin I P, et al. Porous carbons from inverse vulcanised polymers[J]. Microporous and Mesoporous Materials, 2016, 232: 189-195. |
87 | Lee J S, Parker D J, Cooper A I, et al. High surface area sulfur-doped microporous carbons from inverse vulcanised polymers[J]. Journal of Materials Chemistry A, 2017, 5(35): 18603-18609. |
88 | 谢金明, 庄容, 杜宇轩, 等. 硫掺杂炭材料在钠离子电池负极中的研究进展[J]. 新型炭材料, 2023, 38(2): 305-316. |
Xie J M, Zhuang R, Du Y X, et al. Advances in sulfur-doped carbon materials for use as anodes in sodium-ion batteries[J]. New Carbon Materials, 2023, 38(2): 305-316. | |
89 | Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8): 2465-2476. |
90 | Guo Y P, Zeng Z Q, Liu Y J, et al. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics[J]. Journal of Materials Chemistry A, 2018, 6(9): 4055-4067. |
91 | Tian J Y, Zhang H Y, Liu Z M, et al. One-step synthesis of 3D sulfur-doped porous carbon with multilevel pore structure for high-rate supercapacitors[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1596-1605. |
92 | Seredych M, Jagiello J, Bandosz T J. Complexity of CO2 adsorption on nanoporous sulfur-doped carbons — is surface chemistry an important factor?[J]. Carbon, 2014, 74: 207-217. |
93 | Xia Y D, Zhu Y Q, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hydrogen and carbon dioxide[J]. Carbon, 2012, 50(15): 5543-5553. |
94 | Kiciński W, Szala M, Bystrzejewski M. Sulfur-doped porous carbons: synthesis and applications[J]. Carbon, 2014, 68: 1-32 |
95 | Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5): 1765-1771. |
96 | Liu B G, Ma X C, Wei D, et al. Development of ultramicropore-mesopore interconnected pore architectures for boosting carbon dioxide capture at low partial pressure[J]. Carbon, 2022, 192: 41-49. |
97 | Marco-Lozar J P, Kunowsky M, Suárez-García F, et al. Sorbent design for CO2 capture under different flue gas conditions[J]. Carbon, 2014, 72: 125-134. |
98 | Zaman A C. Pyrolysis of sulfonic acid substituted benzenes and investigation of CO2 capture capability of resulting carbons[J]. Journal of Solid State Chemistry, 2021, 303: 122546. |
99 | Rehman A, Park S J. From chitosan to urea-modified carbons: tailoring the ultra-microporosity for enhanced CO2 adsorption[J]. Carbon, 2020, 159: 625-637. |
100 | Tang Z P, Gao J M, Zhang Y, et al. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption[J]. Fuel Processing Technology, 2023, 241: 107613. |
101 | Bai J L, Shao J W, Yu Q Y, et al. Sulfur-doped porous carbon adsorbent: a promising solution for effective and selective CO2 capture[J]. Chemical Engineering Journal, 2024, 479: 147667. |
102 | Shi W W, Wang R Z, Liu H L, et al. Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO2 capture[J]. RSC Advances, 2019, 9(40): 23241-23253. |
103 | Shao J W, Ma C D, Zhao J J, et al. Effective nitrogen and sulfur co-doped porous carbonaceous CO2 adsorbents derived from amino acid[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127750. |
104 | Cui H M, Xu J G, Shi J S, et al. N, S co-doped carbon spheres synthesized from glucose and thiourea as efficient CO2 adsorbents[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 138: 104441. |
105 | Li Y, Wang Y G, Liu N, et al. Nitrogen and sulfur co-doped microporous carbon prepared by a couple of activating and functionalized reagents for efficient CO2 capture and selective CO2/CH4 separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658: 130732. |
106 | Ma C D, Lu T Y, Shao J W, et al. Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption[J]. Separation and Purification Technology, 2022, 281: 119899. |
107 | Ma C D, Bai J L, Demir M, et al. Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor[J]. Fuel, 2022, 326: 125119. |
108 | Montes-Morán M A, Suárez D, Menéndez J A, et al. On the nature of basic sites on carbon surfaces: an overview[J]. Carbon, 2004, 42(7): 1219-1225. |
109 | Ma X C, Yang Y H, Wu Q D, et al. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: do adsorbents capture CO2 chiefly through narrow micropores?[J]. Fuel, 2020, 282: 118727. |
110 | Zhang P Y, Sui Z Y, Wang E, et al. Preparation of hierarchically porous sulfur- and oxygen-co-doped carbon for gas uptake and lithium-ion battery[J]. Microporous and Mesoporous Materials, 2018, 264: 118-124. |
111 | Querejeta N, Gil M V, Pevida C, et al. Standing out the key role of ultramicroporosity to tailor biomass-derived carbons for CO2 capture[J]. Journal of CO2 Utilization, 2018, 26: 1-7. |
112 | Guo Z, Lu X, Xin Z. N, S, O co-doped porous carbons derived from bio-based polybenzoxazine for efficient CO2 capture[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128845. |
113 | Wang Y H, Wang M H, Wang Z W, et al. Tunable-quaternary (N, S, O, P)-doped porous carbon microspheres with ultramicropores for CO2 capture[J]. Applied Surface Science, 2020, 507(C): 145130. |
114 | Tian Z H, Lai F L, Tobias H, et al. Synthesis of carbon frameworks with N, O and S-lined pores from Gallic acid and thiourea for superior CO2 adsorption and supercapacitors[J]. Science China Materials, 2020, 63(5): 748-757. |
115 | 邵健, 冯军宗, 柳凤琦, 等. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
Shao J, Feng J Z, Liu F Q, et al. Research progress on structural modulation and functionalized preparation of phenolic resin-based carbon microspheres[J]. CIESC Journal, 2022, 73(9): 3787-3801. | |
116 | Sharma M, Snyder M A. Facile synthesis of flower-like carbon microspheres for carbon dioxide capture[J]. Microporous and Mesoporous Materials, 2022, 335: 111801. |
117 | Xu W L, Chen H J, Wang Y C, et al. Chitin-derived fibrous carbon microspheres as support of polyamine for remarkable CO2 capture[J]. Green Chemical Engineering, 2022, 3(3): 267-279. |
118 | Hong J Y, Huh S. Hollow S-doped carbon spheres from spherical CT/PEDOT composite particles and their CO₂ sorption properties[J]. Journal of Colloid and Interface Science, 2014, 436: 77-82. |
119 | Sun Y H, Zhao J H, Wang J L, et al. Sulfur-doped millimeter-sized microporous activated carbon spheres derived from sulfonated poly(styrene-divinylbenzene) for CO2 capture[J]. The Journal of Physical Chemistry C, 2017, 121(18): 10000-10009. |
120 | 周毅, 王永洪, 张新儒, 等. PEBA/氮硫共掺杂多孔炭球混合基质膜的制备及CO2分离性能研究[J]. 化工学报, 2021, 72(10): 5237-5246. |
Zhou Z, Wang Y H, Zhang X R, et al. Preparation of PEBA/N,S co-doped porous carbon sphere mixed matrix membrane for CO2 separation [J]. CIESC Journal, 2021, 72(10): 5237-5246. | |
121 | Wang X Y, Liu Z, Liu X F, et al. Ultralight and multifunctional PVDF/SiO2@GO nanofibrous aerogel for efficient harsh environmental oil-water separation and crude oil absorption[J]. Carbon, 2022, 193: 77-87. |
122 | 牛卉芳, 闫伦靖, 吕鹏, 等. 煤焦油沥青基碳气凝胶微球的制备及分析[J]. 化工学报, 2022, 73(12): 5605-5614. |
Niu H F, Yan L J, Lyu P, et al. Preparation and analysis of carbon aerogel microspheres based on coal tar pitch[J]. CIESC Journal, 2022, 73(12): 5605-5614. | |
123 | Dan H B, Ji K D, Gao Y, et al. Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH4H2PO4 modification for multi-behavioral oil/water separation[J]. Science of the Total Environment, 2022, 837: 155869. |
124 | Wohlgemuth S A, White R J, Willinger M G, et al. A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction[J]. Green Chemistry, 2012, 14(5): 1515-1523. |
125 | Li D H, Chang G J, Zong L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials, 2018, 17: 22-30. |
126 | Kiciński W, Dziura A. Heteroatom-doped carbon gels from phenols and heterocyclic aldehydes: sulfur-doped carbon xerogels[J]. Carbon, 2014, 75: 56-67. |
127 | 肖弦, 徐文昊, 沈亮, 等. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879. |
Xiao X, Xu W H, Shen L, et al. Preparation and electrochemical properties of new porous carbon materials by synthesizing graphene oxide and waste activated sludge[J]. CIESC Journal, 2021, 72(7): 3869-3879. | |
128 | Wood B C, Bhide S Y, Dutta D, et al. Methane and carbon dioxide adsorption on edge-functionalized graphene: a comparative DFT study[J]. The Journal of Chemical Physics, 2012, 137(5): 054702. |
129 | Seema H, Kemp K C, Le N H, et al. Highly selective CO2 capture by S-doped microporous carbon materials[J]. Carbon, 2014, 66: 320-326. |
130 | Li J Y, Hou M L, Chen Y Q, et al. Enhanced CO2 capture on graphene via N, S dual-doping[J]. Applied Surface Science, 2017, 399: 420-425. |
131 | Li X F, Xue Q Z, Chang X, et al. Effects of sulfur doping and humidity on CO2 capture by graphite split pore: a theoretical study[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8336-8343. |
132 | Seredych M, Rodriguez-castellon E, Bandosz T. Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions[J]. Carbon, 2016, 107: 501-509. |
133 | Bandosz T J, Seredych M, Rodríguez-Castellón E, et al. Evidence for CO2 reactive adsorption on nanoporous S- and N-doped carbon at ambient conditions[J]. Carbon, 2016, 96: 856-863. |
134 | 郭宁宁, 王宇, 王润伟, 等. 常温合成硫掺杂微孔碳及其二氧化碳的吸附性能[J]. 无机化学学报, 2017, 33(11): 2147-2152. |
Guo N N, Wang Y, Wang R W, et al. Synthesis of sulfur doped porous carbon at room temperature for CO2 adsorption[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(11): 2147-2152. | |
135 | 叶剑波. 活性炭改性及其吸附CO2/H2O性能研究[D]. 沈阳: 东北大学, 2014. |
Ye J B. Study on modification of activated carbon and its adsorption performance for CO2/H2O[D]. Shenyang: Northeastern University, 2014. | |
136 | Plaza M G, González A S, Rubiera F, et al. Water vapour adsorption by a coffee-based microporous carbon: effect on CO2 capture[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9): 1592-1600. |
137 | Wang J T, Chen H C, Zhou H H, et al. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons[J]. Journal of Environmental Sciences, 2013, 25(1): 124-132. |
138 | Sun Y H, Li K X, Zhao J H, et al. Nitrogen and sulfur co-doped microporous activated carbon macro-spheres for CO2 capture[J]. Journal of Colloid and Interface Science, 2018, 526: 174-183. |
139 | Xiao J F, Wang Y, Zhang T C, et al. N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor[J]. Applied Surface Science, 2021, 562: 150128. |
140 | Jin Z E, Wang J L, Zhao R J, et al. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture[J]. New Carbon Materials, 2018, 33(5): 392-401. |
141 | Singh J, Bhunia H, Basu S M. Development of sulphur-doped carbon monolith derived from phenol-formaldehyde resin for fixed bed CO2 adsorption[J]. Environmental Technology & Innovation, 2020, 20: 101104. |
142 | Saha D, Orkoulas G, Bates D. One-step synthesis of sulfur-doped nanoporous carbons from lignin with ultra-high surface area, sulfur content and CO2 adsorption capacity[J]. Materials, 2023, 16(1): 455. |
143 | Luo L, Yang C L, Liu F, et al. Heteroatom-N, S co-doped porous carbons derived from waste biomass as bifunctional materials for enhanced CO2 adsorption and conversion[J]. Separation and Purification Technology, 2023, 320: 124090. |
144 | Cui H M, Shi J S, Xu J G, et al. Direct synthesis of N, S co-doped porous carbons using novel organic potassium salts as activators for efficient CO2 adsorption[J]. Fuel, 2023, 342: 127824. |
145 | Cao M, Shu Y, Bai Q H, et al. Design of biomass-based N, S co-doped porous carbon via a straightforward post-treatment strategy for enhanced CO2 capture performance[J]. The Science of the Total Environment, 2023, 884: 163750. |
146 | Cao W T, Huang Y F, Li D, et al. N/S co-doped microporous zeolite-templated carbon for efficient CO2 adsorption and separation[J]. Journal of the Energy Institute, 2023, 106: 101159. |
[1] | Ruohan ZHAO, Mengmeng HUANG, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Flow and mass transfer study of CO2 absorption by nanofluid in T-shaped microchannels [J]. CIESC Journal, 2024, 75(1): 221-230. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Yuanhao QU, Wenyi DENG, Xiaodan XIE, Yaxin SU. Study on electro-osmotic dewatering of sludge assisted by activated carbon/graphite [J]. CIESC Journal, 2023, 74(7): 3038-3050. |
[6] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[7] | Lei MAO, Guanzhang LIU, Hang YUAN, Guangya ZHANG. Efficient preparation of carbon anhydrase nanoparticles capable of capturing CO2 and their characteristics [J]. CIESC Journal, 2023, 74(6): 2589-2598. |
[8] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[9] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[10] | Deqi KONG, Yingying ZHANG, Wenling WU, Jun MA, Zhenxing SONG, Donghui ZHANG, Yanjun ZHANG. Simulation and analysis of oxygen production process by six-bed pressure swing adsorption process [J]. CIESC Journal, 2023, 74(12): 4934-4944. |
[11] | Yanle LI, Yilin LIU, Junjie HUO, Yanxia SUN, Shengde DONG, Xin HE, Qi XU, Luxiang MA, Yuan ZHOU, Chunxi HAI. Research progress of aluminum adsorbents in lithium extraction from salt lakes [J]. CIESC Journal, 2023, 74(12): 4777-4791. |
[12] | Xiaolin GAO, Changguo CHEN. A study on production of silica from CO2 mineralization by wollastonite promoted via air-driven membrane electrolysis technology [J]. CIESC Journal, 2023, 74(11): 4739-4748. |
[13] | Xinqi ZHANG, Chen ZHANG, Duoyong ZHANG, Tao XUAN, Zhuozhen GAN, Xuancan ZHU, Liwei WANG. Study on the carbon capture performance of highly selective PEI@MOF-808 adsorbent in humid flue gas [J]. CIESC Journal, 2023, 74(10): 4330-4342. |
[14] | Wenhua TONG, Yilong LI, Yongkui ZHANG, Yabo WANG. Study on alkali-assisted degradation of tributyl phosphate by manganese tetroxide and phosphorus recovery [J]. CIESC Journal, 2023, 74(10): 4277-4285. |
[15] | Yingxi DANG, Peng TAN, Xiaoqin LIU, Linbing SUN. Temperature swing for CO2 capture driven by radiative cooling and solar heating [J]. CIESC Journal, 2023, 74(1): 469-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||