CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2522-2532.DOI: 10.11949/0438-1157.20240209
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Li LUO(), Wenyao CHEN(
), Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN(
)
Received:
2024-02-27
Revised:
2024-05-09
Online:
2024-08-09
Published:
2024-07-25
Contact:
Wenyao CHEN, Xuezhi DUAN
罗莉(), 陈文尧(
), 张晶, 钱刚, 周兴贵, 段学志(
)
通讯作者:
陈文尧,段学志
作者简介:
罗莉(1999—),女,硕士研究生,Y30210161@mail.ecust.edu.cn
基金资助:
CLC Number:
Li LUO, Wenyao CHEN, Jing ZHANG, Gang QIAN, Xinggui ZHOU, Xuezhi DUAN. Alumina structure and surface property regulation for catalyzing methanol dehydration to dimethyl ether[J]. CIESC Journal, 2024, 75(7): 2522-2532.
罗莉, 陈文尧, 张晶, 钱刚, 周兴贵, 段学志. 氧化铝结构与表面性质调控及其催化甲醇脱水制二甲醚性能研究[J]. 化工学报, 2024, 75(7): 2522-2532.
催化剂 | 比表面积/(m2/g) | 孔容/(cm3·g) | 平均孔径/nm |
---|---|---|---|
γ-Al2O3-8.0 | 422.0 | 1.93 | 13.5 |
γ-Al2O3-8.5 | 361.7 | 1.61 | 11.8 |
γ-Al2O3-9.0 | 152.8 | 0.87 | 7.2 |
γ-Al2O3-9.5 | 245.5 | 0.53 | 6.7 |
γ-Al2O3-10.5 | 132.5 | 0.57 | 7.7 |
Table 1 The pore structure parameters of γ-Al2O3 synthesized at different mother liquor pH
催化剂 | 比表面积/(m2/g) | 孔容/(cm3·g) | 平均孔径/nm |
---|---|---|---|
γ-Al2O3-8.0 | 422.0 | 1.93 | 13.5 |
γ-Al2O3-8.5 | 361.7 | 1.61 | 11.8 |
γ-Al2O3-9.0 | 152.8 | 0.87 | 7.2 |
γ-Al2O3-9.5 | 245.5 | 0.53 | 6.7 |
γ-Al2O3-10.5 | 132.5 | 0.57 | 7.7 |
催化剂 | 总酸量/(mmol/g) | 弱酸量/(mmol/g) | 中强酸量/(mmol/g) |
---|---|---|---|
γ-Al2O3-8.0 | 0.643 | 0.539 | 0.104 |
γ-Al2O3-8.5 | 0.509 | 0.374 | 0.135 |
γ-Al2O3-9.0 | 0.368 | 0.203 | 0.165 |
γ-Al2O3-9.5 | 0.236 | 0.111 | 0.125 |
γ-Al2O3-10.5 | 0.203 | 0.095 | 0.108 |
Table 2 The amount of acid sites of γ-Al2O3 synthesized at different mother liquor pH
催化剂 | 总酸量/(mmol/g) | 弱酸量/(mmol/g) | 中强酸量/(mmol/g) |
---|---|---|---|
γ-Al2O3-8.0 | 0.643 | 0.539 | 0.104 |
γ-Al2O3-8.5 | 0.509 | 0.374 | 0.135 |
γ-Al2O3-9.0 | 0.368 | 0.203 | 0.165 |
γ-Al2O3-9.5 | 0.236 | 0.111 | 0.125 |
γ-Al2O3-10.5 | 0.203 | 0.095 | 0.108 |
1 | Prins R. On the structure of γ-Al2O3 [J]. Journal of Catalysis, 2020, 392: 336-346. |
2 | Garbarino G, Travi I, Pani M, et al. Pure vs ultra-pure γ-alumina: a spectroscopic study and catalysis of ethanol conversion[J]. Catalysis Communications, 2015, 70: 77-81. |
3 | Pérez-Martínez D J, Eloy P, Gaigneaux E M, et al. Study of the selectivity in FCC naphtha hydrotreating by modifying the acid-base balance of CoMo/γ-Al2O3 catalysts[J]. Applied Catalysis A: General, 2010, 390(1/2): 59-70. |
4 | Zagoruiko A N, Shinkarev V V, Vanag S V, et al. Catalytic processes and catalysts for production of elemental sulfur from sulfur-containing gases[J]. Catalysis in Industry, 2010, 2(4): 343-352. |
5 | Chaichana E, Boonsinvarothai N, Chitpong N, et al. Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification[J]. Journal of Porous Materials, 2019, 26(2): 599-610. |
6 | Phung T K, Herrera C, Larrubia M Á, et al. Surface and catalytic properties of some γ-Al2O3 powders[J]. Applied Catalysis A: General, 2014, 483: 41-51. |
7 | Sui B K, Wang G, Yuan S H, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. |
8 | Yang Z R, Shi Y, Lin Y, et al. Hierarchical pore construction of alumina microrod supports for Pt catalysts toward the enhanced performance of n-heptane reforming[J]. Chemical Engineering Science, 2022, 252: 117286. |
9 | Bateni H, Able C. Development of heterogeneous catalysts for dehydration of methanol to dimethyl ether: a review[J]. Catalysis in Industry, 2019, 11(1): 7-33. |
10 | 余英哲. 乙醇脱水制乙烯γ-Al2O3催化剂的分子模拟和实验研究[D]. 天津: 天津大学, 2012. |
Yu Y Z. Molecular simulation and experimental study on ethanol dehydration to ethylene on γ-Al2O3 catalyst[D]. Tianjin: Tianjin University, 2012. | |
11 | 高帅涛. 溶胶-凝胶法制备介孔结构氧化铝载体球——结构与性能调控[D]. 长沙: 中南大学, 2022. |
Gao S T. Preparation of mesoporous spherical alumina support by sol-gel method—structure and performance[D]. Changsha: Central South University, 2022. | |
12 | Shi Q Q, Wei X J, Raza A, et al. Recent advances in aerobic photo-oxidation of methanol to valuable chemicals[J]. ChemCatChem, 2021, 13(15): 3381-3395. |
13 | Olah G A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639. |
14 | Merkouri L P, Ahmet H, Ramirez Reina T, et al. The direct synthesis of dimethyl ether (DME) from landfill gas: a techno-economic investigation[J]. Fuel, 2022, 319: 123741. |
15 | Zeman P, Hönig V, Procházka P, et al. Dimethyl ether as a renewable fuel for diesel engines[J]. Agronomy Research, 2017, 15(5): 2226-2235. |
16 | Boon J, van Kampen J, Hoogendoorn R, et al. Reversible deactivation of γ-alumina by steam in the gas-phase dehydration of methanol to dimethyl ether[J]. Catalysis Communications, 2019, 119: 22-27. |
17 | Kim S M, Lee Y J, Bae J W, et al. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Applied Catalysis A: General, 2008, 348(1): 113-120. |
18 | Keshavarz A R, Rezaei M, Yaripour F. Preparation of nanocrystalline γ-Al2O3 catalyst using different procedures for methanol dehydration to dimethyl ether[J]. Journal of Natural Gas Chemistry, 2011, 20(3): 334-338. |
19 | Armenta M A, Maytorena V M, Flores-Sánchez L A, et al. Dimethyl ether production via methanol dehydration using Fe3O4 and CuO over γ-χ-Al2O3 nanocatalysts[J]. Fuel, 2020, 280: 118545. |
20 | Mollavali M, Yaripour F, Atashi H, et al. Intrinsic kinetics study of dimethyl ether synthesis from methanol on γ-Al2O3 catalysts[J]. Industrial & Engineering Chemistry Research, 2008, 47(18): 7130. |
21 | Mollavali M, Yaripour F, Mohammadi-Jam S, et al. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol[J]. Fuel Processing Technology, 2009, 90(9): 1093-1098. |
22 | Ardy A, Hantoko D, Rizkiana J, et al. Effect of phosphorus impregnation on γ-Al2O3 for methanol dehydration to dimethyl ether[J]. Arabian Journal for Science and Engineering, 2023, 48(12): 15883-15893. |
23 | Potdar H S, Jun K W, Bae J W, et al. Synthesis of nano-sized porous γ-alumina powder via a precipitation/digestion route[J]. Applied Catalysis A: General, 2007, 321(2): 109-116. |
24 | Akarmazyan S S, Panagiotopoulou P, Kambolis A, et al. Methanol dehydration to dimethylether over Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2014, 145: 136-148. |
25 | Liu D H, Yao C F, Zhang J Q, et al. Catalytic dehydration of methanol to dimethyl ether over modified γ-Al2O3 catalyst[J]. Fuel, 2011, 90(5): 1738-1742. |
26 | Hashemi Dehkordi S A, Golbodaqi M, Mortazavi-Manesh A, et al. Dimethyl ether from methanol on mesoporous γ-alumina catalyst prepared from surfactant free highly porous pseudo-boehmite[J]. Molecular Catalysis, 2023, 538: 113004. |
27 | Poto S, Vico van Berkel D, Gallucci F, et al. Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: the role of CO2 and CO hydrogenation[J]. Chemical Engineering Journal, 2022, 435: 134946. |
28 | 万莉莎. 膜分散微反应器中纤维状介孔γ-氧化铝的制备与公斤级放大试验[D]. 西安: 西北大学, 2021. |
Wan L S. Preparation and scale-up test on fibrous mesoporous γ-Al2O3 in membrane dispersion microreactor[D]. Xi’an: Northwest University, 2021. | |
29 | 甘志宏. 高稳定性介孔氧化铝的合成、形貌控制与表征[D]. 大连: 大连理工大学, 2008. |
Gan Z H. Synthesis, morphology control, and characterization of highly stabilized mesoporous alumina[D]. Dalian: Dalian University of Technology, 2008. | |
30 | Zhu H Y, Riches J D, Barry J C. γ-Alumina nanofibers prepared from aluminum hydrate with poly (ethylene oxide) surfactant[J]. Chemistry of Materials, 2002, 14(5): 2086-2093. |
31 | Breckner C J, Pham H N, Dempsey M G, et al. The role of Lewis acid sites in γ-Al2O3 oligomerization[J]. ChemPhysChem, 2023, 24(14): e202300244. |
32 | Parry E P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity[J]. Journal of Catalysis, 1963, 2(5): 371-379. |
33 | Shamanaev I, Deliy I, Gerasimov E, et al. Synergetic effect of Ni2P/SiO2 and γ-Al2O3 physical mixture in hydrodeoxygenation of methyl palmitate[J]. Catalysts, 2017, 7(11): 329. |
34 | Jokar F, Alavi S M, Rezaei M. Investigating the hydroisomerization of n-pentane using Pt supported on ZSM-5, desilicated ZSM-5, and modified ZSM-5/MCM-41[J]. Fuel, 2022, 324: 124511. |
35 | Lok B M, Marcus B K, Angell C L. Characterization of zeolite acidity (Ⅱ): Measurement of zeolite acidity by ammonia temperature programmed desorption and FTIR. spectroscopy techniques[J]. Zeolites, 1986, 6(3): 185-194. |
36 | Han L, Zhou Z Q, Bollas G M. Heterogeneous modeling of chemical-looping combustion (Ⅰ): Reactor model[J]. Chemical Engineering Science, 2013, 104: 233-249. |
37 | Viscardi R, Barbarossa V, Gattia D M, et al. Effect of surface acidity on the catalytic activity and deactivation of supported sulfonic acids during dehydration of methanol to DME[J]. New Journal of Chemistry, 2020, 44(39): 16810-16820. |
38 | Yaripour F, Shariatinia Z, Sahebdelfar S, et al. The effects of synthesis operation conditions on the properties of modified γ-alumina nanocatalysts in methanol dehydration to dimethyl ether using factorial experimental design[J]. Fuel, 2015, 139: 40-50. |
39 | Hosseini S Y, Khosravi Nikou M R. Investigation of different precipitating agents effects on performance of γ-Al2O3 nanocatalysts for methanol dehydration to dimethyl ether[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6): 4421-4428. |
40 | Sahebdelfar S, Bijani P M, Yaripour F. Deactivation kinetics of γ-Al2O3 catalyst in methanol dehydration to dimethyl ether[J]. Fuel, 2022, 310: 122443. |
41 | Armenta M A, Valdez R, Quintana J M, et al. Highly selective CuO/γ-Al2O3 catalyst promoted with hematite for efficient methanol dehydration to dimethyl ether[J]. International Journal of Hydrogen Energy, 2018, 43(13): 6551-6560. |
42 | Hosseini Z, Taghizadeh M, Yaripour F. Synthesis of nanocrystalline γ-Al2O3 by sol-gel and precipitation methods for methanol dehydration to dimethyl ether[J]. Journal of Natural Gas Chemistry, 2011, 20(2): 128-134. |
43 | Hosseini S Y, Khosravi Nikou M R. Synthesis and characterization of different γ-Al2O3 nanocatalysts for methanol dehydration to dimethyl ether[J]. International Journal of Chemical Reactor Engineering, 2012, 10(1): A65. |
44 | Kim S D, Baek S C, Lee Y J, et al. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Applied Catalysis A: General, 2006, 309(1): 139-143. |
45 | Rahmanpour O, Shariati A, Nikou M R K. New method for synthesis nano size γ-Al2O3 catalyst for dehydration of methanol to dimethyl ether[J]. International Journal of Chemical Engineering and Applications, 2012: 125-128. |
46 | Aboul-Fotouh S M K. Effect of ultrasonic irradiation and/or halogenation on the catalytic performance of γ-Al2O3 for methanol dehydration to dimethyl ether[J]. Journal of Fuel Chemistry and Technology, 2013, 41(9): 1077-1084. |
47 | Dey S, Dhal G C, Mohan D, et al. Kinetics of catalytic oxidation of carbon monoxide over CuMnAgO x catalyst[J]. Materials Discovery, 2017, 8: 18-25. |
48 | Zhokh A, Trypolskyi A, Gritsenko V, et al. Intrinsic kinetics of the methanol dehydration to dimethyl ether over laboratory and commercial γ-alumina: a comparative study[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(1): e2722. |
49 | Kobl K, Thomas S, Zimmermann Y, et al. Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper-zinc oxide catalysts with alumina or zirconia supports[J]. Catalysis Today, 2016, 270: 31-42. |
50 | Zhokh O O, Trypolskyi A I. Effect of water on the rate of methanol conversion to dimethyl ether over H-ZSM-5 zeolite[J]. Theoretical and Experimental Chemistry, 2021, 57(3): 220-225. |
51 | Li H X, Yang L Q Q, Chi Z Y, et al. CO2 hydrogenation to methanol over Cu/ZnO/Al2O3 catalyst: kinetic modeling based on either single- or dual-active site mechanism[J]. Catalysis Letters, 2022, 152(10): 3110-3124. |
52 | Sontakke S, Modak J, Madras G. Photocatalytic inactivation of Escherischia coli and Pichia pastoris with combustion synthesized titanium dioxide[J]. Chemical Engineering Journal, 2010, 165(1): 225-233. |
53 | Wang Y, Wang G, Deng W, et al. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chemical Engineering Journal, 2020, 395: 125172. |
54 | Li G B, Shen K, Wang L, et al. Synergistic degradation mechanism of chlorobenzene and NO x over the multi-active center catalyst: the role of NO2, Brønsted acidic site, oxygen vacancy[J]. Applied Catalysis B: Environmental, 2021, 286: 119865. |
55 | Zhang L P, Li T, Dai X C, et al. Water activation triggered by Cu-Co double-atom catalyst for silane oxidation[J]. Angewandte Chemie International Edition, 2023, 62(47): 2313343. |
56 | Li W B, Gan J, Liu Y X, et al. Platinum and frustrated Lewis pairs on ceria as dual-active sites for efficient reverse water-gas shift reaction at low temperatures[J]. Angewandte Chemie International Edition, 2023, 62(37): e202305661. |
[1] | Xusheng LIU, Zeyang LI, Yusen YANG, Min WEI. Research progress on electrocatalytic carbon dioxide reduction to gaseous products [J]. CIESC Journal, 2024, 75(7): 2385-2408. |
[2] | Yin WANG, Pengfei CHU, Hu LIU, Jing LYU, Shouying HUANG, Shengping WANG, Xinbin MA. Influence of aluminum sol with different pH on performance of shaped mordenite catalyst for dimethyl ether carbonylation [J]. CIESC Journal, 2024, 75(7): 2533-2543. |
[3] | Lu YANG, Congcong LIU, Tongtong MENG, Boyuan ZHANG, Tengfei YANG, Wen’an DENG, Xiaobin WANG. Hydrogenation and coke-suppression performance of dispersed catalyst in coal/heavy oil co-processing reactions [J]. CIESC Journal, 2024, 75(7): 2556-2564. |
[4] | Tianwen WANG, Su YAN, Mengyuan ZHAO, Tianrang YANG, Jianguo LIU. Mechanisms of chromium poisoning in solid oxide cell air electrodes and research advances in enhancing chromium-resistivity [J]. CIESC Journal, 2024, 75(6): 2091-2108. |
[5] | Tingting ZHAO, Lixiang YAN, Fuli TANG, Minzhi XIAO, Ye TAN, Liubin SONG, Zhongliang XIAO, Lingjun LI. Research progress on design strategies and reaction mechanisms of photo-assisted Li-CO2 battery catalysts [J]. CIESC Journal, 2024, 75(5): 1750-1764. |
[6] | Jinhong MO, Xue HAN, Yixiang ZHU, Jing LI, Xuyu WANG, Hongbing JI. Investigation of Pt-Ga/CeO2-ZrO2-Al2O3 bifunctional catalyst for the catalytic conversion of n-butane into olefins [J]. CIESC Journal, 2024, 75(5): 1855-1869. |
[7] | Yu DING, Changze YANG, Jun LI, Huidong SUN, Hui SHANG. Research progress and prospects of atomic-scale molybdenum-based hydrodesulfurization catalysts [J]. CIESC Journal, 2024, 75(5): 1735-1749. |
[8] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[9] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[10] | Mingze SUN, Helai HUANG, Zhiqiang NIU. Pt-based oxygen reduction reaction catalysts: from single crystal electrode to nanostructured extended surface [J]. CIESC Journal, 2024, 75(4): 1256-1269. |
[11] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[12] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[13] | Yu HAN, Le ZHOU, Xin ZHANG, Yong LUO, Baochang SUN, Haikui ZOU, Jianfeng CHEN. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance [J]. CIESC Journal, 2024, 75(4): 1533-1542. |
[14] | Yiwei FAN, Wei LIU, Yingying LI, Peixia WANG, Jisong ZHANG. Research progress on catalytic dehydrogenation of dodecahydro-N-ethylcarbazole as liquid organic hydrogen carrier [J]. CIESC Journal, 2024, 75(4): 1198-1208. |
[15] | Xudong JIA, Bolong YANG, Qian CHENG, Xueli LI, Zhonghua XIANG. Preparation of high-efficiency iron-cobalt bimetallic site oxygen reduction electrocatalysts by step-by-step metal loading method [J]. CIESC Journal, 2024, 75(4): 1578-1593. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||