CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1843-1854.DOI: 10.11949/0438-1157.20240144

• Catalysis, kinetics and reactors • Previous Articles     Next Articles

Study of anode materials for electrocatalytic decomposition of liquid ammonia

Xinzhe PEI1(), Zhuxing SUN2, Yuxiang LIN1, Chaoyang ZHANG1, Yong QIAN1(), Xingcai LYU1   

  1. 1.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.Central Research and Development Institute, LONGi Green Energy Technology Company Limited, Xi’an 710100, Shaanxi, China
  • Received:2024-01-31 Revised:2024-02-26 Online:2024-06-25 Published:2024-05-25
  • Contact: Yong QIAN

电催化分解液氨阳极材料的研究

裴欣哲1(), 孙朱行2, 林钰翔1, 张朝阳1, 钱勇1(), 吕兴才1   

  1. 1.上海交通大学机械与动力工程学院,上海 200240
    2.隆基绿能科技有限公司中央研究院,陕西 西安 710100
  • 通讯作者: 钱勇
  • 作者简介:裴欣哲(1998—),男,硕士研究生,xinzhepei1998@sjtu.edu.cn
  • 基金资助:
    上海市“科技创新行动计划”科技支撑碳达峰碳中和专项(21DZ1208100)

Abstract:

Ammonia is a chemical storage material with high hydrogen storage density. Efficient use of energy can be achieved through ammonia-hydrogen conversion. The decomposition of ammonia into hydrogen plays a pivotal role in this conversion process, and electrocatalytic direct decomposition of liquid ammonia is theoretically the most energy-efficient pathway. A key challenge lies in reducing the overpotential at the anode during liquid ammonia direct electrolysis to unlock the full potential of electrocatalytic ammonia decomposition in the hydrogen economy. This study employs linear scanning voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronopotential (CP) tests to investigate the electrochemical properties and corrosion resistance of various materials, including copper, cobalt, iron, molybdenum, vanadium, titanium, carbon paper and 304 stainless steel, as anode materials in the electrolysis of liquid ammonia. The tests were conducted in a 2.0 mol/L NH4Cl liquid ammonia solution. The findings indicate that titanium exhibits subpar electrocatalytic activity as an anode for the liquid ammonia electrolysis process. While copper, cobalt, and iron display excellent electrocatalytic activity, they also experience pronounced corrosion at forward potentials. 304 stainless steel showcases impressive electrocatalytic activity but exhibits average stability at high current densities. Carbon paper, despite its modest electrocatalytic activity, demonstrates commendable stability at elevated current densities, coupled with a large active surface area, rendering it suitable as a substrate material for the anode in liquid ammonia electrolysis. Moreover, molybdenum and vanadium exhibit superior electrocatalytic activity compared to carbon paper, with slower corrosion rates at high current density, positioning them as viable materials for the anode in liquid ammonia electrolysis.

Key words: electrocatalysis, ammonia oxidation, electrolysis, liquid ammonia, electrochemistry, corrosion, chemical hydrogen storage

摘要:

氨是一种具有高储氢密度的化学储氢材料,通过氨氢转换可以实现能源的高效利用。氨分解产氢是氨氢转换过程的重要一环,在氨分解的途径中电催化直接分解液氨理论上具有最低能耗,若能有效降低液氨直接电解阳极的过电位,电催化分解液氨在氢经济中将具有广阔的前景。依次使用铜、钴、铁、钼、钒、钛、碳纸和304不锈钢作为液氨电解过程阳极材料进行线性扫描伏安测试、循环伏安测试、电化学阻抗谱测试和计时电位测试,以研究这些材料在2.0 mol/L NH4Cl的液氨溶液中的电催化活性和在高电流密度下的耐腐蚀性能。结果表明:钛作为液氨电解过程的阳极电催化活性很差;铜、钴和铁虽具有优异的电催化活性,但在正向电位下会发生严重腐蚀;304不锈钢虽具有优异的电催化活性,但在高电流密度下稳定性一般;碳纸电催化活性较差,但高电流密度下具有良好的稳定性,且活性表面积较大,适合作为液氨电解阳极催化剂基底材料;钼和钒电催化活性优于碳纸,在高电流密度下腐蚀率较低,可以作为液氨电解阳极材料。

关键词: 电催化, 氨氧化, 电解, 液氨, 电化学, 腐蚀, 化学储氢

CLC Number: