CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2299-2312.DOI: 10.11949/0438-1157.20240127
• Process system engineering • Previous Articles Next Articles
Hongtao LI1(), Zhenlei WANG1(
), Xin WANG2
Received:
2024-01-27
Revised:
2024-04-29
Online:
2024-07-03
Published:
2024-06-25
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:
黎宏陶(1998—),男,博士研究生,y20200100@mail.ecust.edu.cn
基金资助:
CLC Number:
Hongtao LI, Zhenlei WANG, Xin WANG. Improved conditional Gaussian regression soft sensor based on just-in-time learning[J]. CIESC Journal, 2024, 75(6): 2299-2312.
黎宏陶, 王振雷, 王昕. 基于即时学习的改进条件高斯回归软测量[J]. 化工学报, 2024, 75(6): 2299-2312.
高斯模态 | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
Table 1 Parameters of Gaussian components
高斯模态 | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 |
项目 | WGR | STWCGR | WGR | STWCGR |
---|---|---|---|---|
RMSE | 0.042 | 0.190 | 2.702 | 0.804 |
0.998 | 0.966 | -1.937 | 0.732 |
Table 2 Soft sensing performance in numerical example Ⅱ
项目 | WGR | STWCGR | WGR | STWCGR |
---|---|---|---|---|
RMSE | 0.042 | 0.190 | 2.702 | 0.804 |
0.998 | 0.966 | -1.937 | 0.732 |
变量名 | 含义 |
---|---|
U1 | 塔顶温度 |
U2 | 塔顶压力 |
U3 | 回流流量 |
U4 | 向下一过程流量 |
U5 | 第6隔板温度 |
U6 | 塔釜温度A |
U7 | 塔釜温度B |
Y | 塔釜丁烷含量 |
Table 3 Description of variables for debutanizer column
变量名 | 含义 |
---|---|
U1 | 塔顶温度 |
U2 | 塔顶压力 |
U3 | 回流流量 |
U4 | 向下一过程流量 |
U5 | 第6隔板温度 |
U6 | 塔釜温度A |
U7 | 塔釜温度B |
Y | 塔釜丁烷含量 |
项目 | LSTM | GRU | JIT-PLS | WGR | STWCGR |
---|---|---|---|---|---|
RMSE | 0.148 | 0.132 | 0.073 | 0.067 | 0.062 |
0.270 | 0.226 | 0.787 | 0.820 | 0.872 |
Table 4 Soft sensing performance in debutanizer column process
项目 | LSTM | GRU | JIT-PLS | WGR | STWCGR |
---|---|---|---|---|---|
RMSE | 0.148 | 0.132 | 0.073 | 0.067 | 0.062 |
0.270 | 0.226 | 0.787 | 0.820 | 0.872 |
项目 | TWCGR* | TWCGR | STWCGR* | STWCGR |
---|---|---|---|---|
RMSE | 0.097 | 0.101 | 0.063 | 0.062 |
0.688 | 0.666 | 0.871 | 0.872 |
Table 5 Soft sensing performance of ablation experiment
项目 | TWCGR* | TWCGR | STWCGR* | STWCGR |
---|---|---|---|---|
RMSE | 0.097 | 0.101 | 0.063 | 0.062 |
0.688 | 0.666 | 0.871 | 0.872 |
变量名 | 含义 | 变量名 | 含义 |
---|---|---|---|
X1 | 物料A 流量 | X13 | 分离器 |
X2 | 物料D 流量 | X14 | 分离器塔底流量 |
X3 | 物料E 流量 | X15 | 汽提塔液位 |
X4 | A、B、C总进料 | X16 | 汽提塔压力 |
X5 | 再循环流量 | X17 | 汽提塔塔底流量 |
X6 | 反应器进料量 | X18 | 汽提塔温度 |
X7 | 反应器压力 | X19 | 蒸汽流量 |
X8 | 反应器液位 | X20 | 压缩机功率 |
X9 | 反应器温度 | X21 | 反应器冷凝水出口温度 |
X10 | 排放速度 | X22 | 冷凝器冷却水出口温度 |
X11 | 分离器温度 | Y | 产物中G组分摩尔分数 |
X12 | 分离器液位 |
Table 6 Description of variables for TE process
变量名 | 含义 | 变量名 | 含义 |
---|---|---|---|
X1 | 物料A 流量 | X13 | 分离器 |
X2 | 物料D 流量 | X14 | 分离器塔底流量 |
X3 | 物料E 流量 | X15 | 汽提塔液位 |
X4 | A、B、C总进料 | X16 | 汽提塔压力 |
X5 | 再循环流量 | X17 | 汽提塔塔底流量 |
X6 | 反应器进料量 | X18 | 汽提塔温度 |
X7 | 反应器压力 | X19 | 蒸汽流量 |
X8 | 反应器液位 | X20 | 压缩机功率 |
X9 | 反应器温度 | X21 | 反应器冷凝水出口温度 |
X10 | 排放速度 | X22 | 冷凝器冷却水出口温度 |
X11 | 分离器温度 | Y | 产物中G组分摩尔分数 |
X12 | 分离器液位 |
变量 | 含义 |
---|---|
X1 | 塔顶压力 |
X2 | 塔顶温度 |
X3 | 142#温度 |
X4 | 168#温度 |
X5 | 塔釜采出温度 |
X6 | 再沸器出口物料温度 |
Y | 塔顶乙烷浓度 |
Table 7 Process variables of ethylene distillation tower
变量 | 含义 |
---|---|
X1 | 塔顶压力 |
X2 | 塔顶温度 |
X3 | 142#温度 |
X4 | 168#温度 |
X5 | 塔釜采出温度 |
X6 | 再沸器出口物料温度 |
Y | 塔顶乙烷浓度 |
1 | Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814. |
2 | Sun Q Q, Ge Z Q. A survey on deep learning for data-driven soft sensors[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 5853-5866. |
3 | 王晓阳, 王昕, 王振雷, 等. 一种乙烯裂解炉的多工况监控方法[J]. 计算机与应用化学, 2012, 29(9): 1119-1122. |
Wang X Y, Wang X, Wang Z L, et al. A novel method for monitoring ethylene cracking furnace with multiple operation modes[J]. Computers and Applied Chemistry, 2012, 29(9): 1119-1122. | |
4 | 赵俊峰. 乙烯裂解炉炉管智能结焦诊断方法研究[D]. 广州: 广东工业大学, 2020. |
Zhao J F. Study on intelligent coking diagnosis method of ethylene cracking furnace tubes[D]. Guangzhou: Guangdong University of Technology, 2020. | |
5 | Gama J, Žliobaitė I, Bifet A, et al. A survey on concept drift adaptation[J]. ACM Computing Surveys, 2014, 46(4): 1-37. |
6 | Lü Y, Yang H Z. A multi-model approach for soft sensor development based on feature extraction using weighted kernel fisher criterion[J]. Chinese Journal of Chemical Engineering, 2014, 22(2): 146-152. |
7 | Gholami A R, Shahbazian M. Soft sensor design based on fuzzy C-Means and RFN_SVR for a stripper column[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 23-29. |
8 | Deng X G, Chen Y X, Wang P, et al. Soft sensor modeling for unobserved multimode nonlinear processes based on modified kernel partial least squares with latent factor clustering[J]. IEEE Access, 2020, 8: 35864-35872. |
9 | Stržinar Ž, Pregelj B, Škrjanc I. Soft sensor for non-invasive detection of process events based on Eigenresponse Fuzzy Clustering[J]. Applied Soft Computing, 2023, 132: 109859. |
10 | Yuan X F, Ou C, Wang Y L, et al. A layer-wise data augmentation strategy for deep learning networks and its soft sensor application in an industrial hydrocracking process[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(8): 3296-3305. |
11 | Dai Y, Yu Q, Yang T, et al. Enhanced soft sensor with qualified augmented data using centroid measurement criterion[C]//2021 8th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS). Beijing, China. IEEE, 2021: 435-440. |
12 | Zhang X R, Song C Y, Zhao J, et al. Gaussian mixture continuously adaptive regression for multimode processes soft sensing under time-varying virtual drift[J]. Journal of Process Control, 2023, 124: 1-13. |
13 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
14 | Yuan X F, Ge Z Q, Song Z H. Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 138: 97-109. |
15 | Zhu J L, Ge Z Q, Song Z H. Variational Bayesian Gaussian mixture regression for soft sensing key variables in non-Gaussian industrial processes[J]. IEEE Transactions on Control Systems Technology, 2017, 25(3): 1092-1099. |
16 | Shao W M, Yao L, Ge Z Q, et al. Parallel computing and SGD-based DPMM for soft sensor development with large-scale semisupervised data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(8): 6362-6373. |
17 | Lu J, Liu A J, Dong F, et al. Learning under concept drift: a review[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(12): 2346-2363. |
18 | Kadlec P, Grbić R, Gabrys B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers & Chemical Engineering, 2011, 35(1): 1-24. |
19 | Minku L L, White A P, Yao X. The impact of diversity on online ensemble learning in the presence of concept drift[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(5): 730-742. |
20 | Shao W M, Tian X M. Semi-supervised selective ensemble learning based on distance to model for nonlinear soft sensor development[J]. Neurocomputing, 2017, 222: 91-104. |
21 | Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning[C]//Advances in Neural Information Processing Systems. MIT Press, 1994. |
22 | Yuan X F, Ge Z Q, Song Z H. Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(35): 13736-13749. |
23 | Hazama K, Kano M. Covariance-based locally weighted partial least squares for high-performance adaptive modeling[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 146: 55-62. |
24 | Zhang X, Li Y, Kano M. Quality prediction in complex batch processes with just-in-time learning model based on non-gaussian dissimilarity measure[J]. Industrial & Engineering Chemistry Research, 2015, 54(31): 7694-7705. |
25 | Xiong W L, Zhang W, Xu B G, et al. JITL based MWGPR soft sensor for multi-mode process with dual-updating strategy[J]. Computers & Chemical Engineering, 2016, 90: 260-267. |
26 | Yeo W S, Saptoro A, Kumar P, et al. Just-in-time based soft sensors for process industries: a status report and recommendations[J]. Journal of Process Control, 2023, 128: 103025. |
27 | Jin H P, Chen X G, Yang J W, et al. Adaptive soft sensor modeling framework based on just-in-time learning and kernel partial least squares regression for nonlinear multiphase batch processes[J]. Computers & Chemical Engineering, 2014, 71: 77-93. |
28 | Jiang J S, Jiang Q C. Variational Bayesian probabilistic modeling framework for data-driven distributed process monitoring[J]. Control Engineering Practice, 2021, 110: 104778. |
29 | Guo F, Wei B, Huang B. A just-in-time modeling approach for multimode soft sensor based on Gaussian mixture variational autoencoder[J]. Computers & Chemical Engineering, 2021, 146: 107230. |
30 | Yuan X F, Wang Y L, Yang C H, et al. Probabilistic density-based regression model for soft sensing of nonlinear industrial processes[J]. Journal of Process Control, 2017, 57: 15-25. |
31 | Bishop C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006. |
[1] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[2] | Xi MENG, Yan WANG, Zijian SUN, Junfei QIAO. Prediction of NO x emissions for municipal solid waste incineration processes using attention modular neural network [J]. CIESC Journal, 2024, 75(2): 593-603. |
[3] | Yongjun XIAO, Zhaochong SHI, Ren WAN, Fan SONG, Changjun PENG, Honglai LIU. Prediction of self-diffusion coefficients of ionic liquids using back-propagation neural networks [J]. CIESC Journal, 2024, 75(2): 429-438. |
[4] | Lin WANG, Rongding JIANG, Chunxiao ZHANG, Xiuzhen LI, Yingying TAN. Evaluation and predictive study of the mixing rules for vapor-liquid equilibrium of R1234yf mixtures [J]. CIESC Journal, 2024, 75(2): 475-483. |
[5] | Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration [J]. CIESC Journal, 2024, 75(2): 493-504. |
[6] | Gang YIN, Zhongyou QIAN, Wenqi CAO, Pengcheng QUAN, Hengquan XU, Feiya YAN, Min WANG, Yu XIANG, Dongmei XIANG, Jian LU, Yuhai ZUO, Wen HE, Runting LU. Health state diagnosis of aluminum electrolytic cells based on Adaboost-PSO-SVM [J]. CIESC Journal, 2024, 75(1): 354-365. |
[7] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[8] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[9] | Yuying GUO, Jiaqiang JING, Wanni HUANG, Ping ZHANG, Jie SUN, Yu ZHU, Junxuan FENG, Hongjiang LU. Water-lubricated drag reduction and pressure drop model modification for heavy oil pipeline [J]. CIESC Journal, 2023, 74(7): 2898-2907. |
[10] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[11] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
[14] | Kenian SHI, Jingyuan ZHENG, Yu QIAN, Siyu YANG. Two-stage stochastic programming of steam power system based on Markov chain [J]. CIESC Journal, 2023, 74(2): 807-817. |
[15] | Xinwei MA, Xingsen MU, Zhu LONG, Shengqiang SHEN. Prediction of heat transfer coefficient of horizontal tube falling film evaporation based on GA-BP neural network [J]. CIESC Journal, 2023, 74(12): 4840-4851. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 362
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||