CIESC Journal ›› 2024, Vol. 75 ›› Issue (6): 2353-2361.DOI: 10.11949/0438-1157.20240004
• Energy and environmental engineering • Previous Articles Next Articles
Yang JIANG1(), Changhong PENG1(
), Wei CHEN1, Hao ZHOU1, Zhongbin MA2, Hongbo LI2, Zairong QIU1, Guopeng ZHANG1, Kanggen ZHOU1
Received:
2024-01-03
Revised:
2024-04-12
Online:
2024-07-03
Published:
2024-06-25
Contact:
Changhong PENG
江洋1(), 彭长宏1(
), 陈伟1, 周豪1, 马忠彬2, 李洪博2, 邱在容1, 张国鹏1, 周康根1
通讯作者:
彭长宏
作者简介:
江洋(1996—),男,博士研究生,jycsu19@163.com
基金资助:
CLC Number:
Yang JIANG, Changhong PENG, Wei CHEN, Hao ZHOU, Zhongbin MA, Hongbo LI, Zairong QIU, Guopeng ZHANG, Kanggen ZHOU. Pilot study on comprehensive recycling of waste lithium iron phosphate powder[J]. CIESC Journal, 2024, 75(6): 2353-2361.
江洋, 彭长宏, 陈伟, 周豪, 马忠彬, 李洪博, 邱在容, 张国鹏, 周康根. 废旧磷酸铁锂粉料综合回收中试研究[J]. 化工学报, 2024, 75(6): 2353-2361.
反应步骤 | 方程式 |
---|---|
煅烧脱氟 | |
浸出过程 | |
中和除杂 | |
沉磷酸铁 | |
深度除杂 | |
回收锂 |
Table 1 The reaction equations involved in each step of the process
反应步骤 | 方程式 |
---|---|
煅烧脱氟 | |
浸出过程 | |
中和除杂 | |
沉磷酸铁 | |
深度除杂 | |
回收锂 |
项目 | 浸出率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | P | Li | Al | F | Ti | Mn | Ni | Co | |
煅烧前 | 97.7 | 96.5 | 99.8 | 83.1 | 75.2 | 67.3 | 95.4 | 95.8 | 75.9 |
煅烧后 | 90.4 | 87.8 | 97.6 | 42.3 | 0.03 | 57.5 | 94.8 | 93.7 | 63.3 |
Table 2 Variations in leaching rates of valuable elements in spent LFP/C before and after calcination
项目 | 浸出率/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | P | Li | Al | F | Ti | Mn | Ni | Co | |
煅烧前 | 97.7 | 96.5 | 99.8 | 83.1 | 75.2 | 67.3 | 95.4 | 95.8 | 75.9 |
煅烧后 | 90.4 | 87.8 | 97.6 | 42.3 | 0.03 | 57.5 | 94.8 | 93.7 | 63.3 |
元素 | 浸出液中浓度 | 净化液中浓度 | 沉降率/% |
---|---|---|---|
Fe | 77 g/L | 82.9 g/L | 10.67 |
P | 41.8 g/L | 38.4 g/L | 13.22 |
Li | 10.7 g/L | 12.4 g/L | 0.03 |
Al | 380 mg/L | 77 mg/L | 85.63 |
Ti | 315 mg/L | 22 mg/L | 94.70 |
Mn | 82 mg/L | 80 mg/L | — |
Ni | 55 mg/L | 12 mg/L | — |
Co | 20 mg/L | 14 mg/L | — |
Table 3 Alterations in ionic concentrations in solution upon aluminum removal
元素 | 浸出液中浓度 | 净化液中浓度 | 沉降率/% |
---|---|---|---|
Fe | 77 g/L | 82.9 g/L | 10.67 |
P | 41.8 g/L | 38.4 g/L | 13.22 |
Li | 10.7 g/L | 12.4 g/L | 0.03 |
Al | 380 mg/L | 77 mg/L | 85.63 |
Ti | 315 mg/L | 22 mg/L | 94.70 |
Mn | 82 mg/L | 80 mg/L | — |
Ni | 55 mg/L | 12 mg/L | — |
Co | 20 mg/L | 14 mg/L | — |
元素 | 含量/% |
---|---|
Fe | 36.02 |
P | 20.31 |
Li | 0.004 |
Al | 0.011 |
Ti | 0.002 |
Mn | 0.003 |
Ni | 0.002 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
Table 4 Chemical analysis of battery-grade iron phosphate products
元素 | 含量/% |
---|---|
Fe | 36.02 |
P | 20.31 |
Li | 0.004 |
Al | 0.011 |
Ti | 0.002 |
Mn | 0.003 |
Ni | 0.002 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
元素 | 含量/% |
---|---|
Fe | 36.18 |
P | 20.48 |
Li | 0.005 |
Al | 0.071 |
Ti | 0.026 |
Mn | 0.003 |
Ni | 0.001 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
Table 5 Chemical analysis of FePO4 for ceramic applications
元素 | 含量/% |
---|---|
Fe | 36.18 |
P | 20.48 |
Li | 0.005 |
Al | 0.071 |
Ti | 0.026 |
Mn | 0.003 |
Ni | 0.001 |
Cu | 0 |
Co | 0 |
Ca | 0 |
F | 0 |
项目 | 投加或产出/kg | ||
---|---|---|---|
Fe | P | Li | |
废旧LFP/C粉料 | -638.6 | -390.6 | -87.8 |
浓磷酸 | 0 | -51.5 | 0 |
工业铁粉 | -90.3 | 0 | 0 |
磷酸二氢钠 | 0 | -29.1 | 0 |
副产亚铁 | -55.5 | 0 | 0 |
磷酸铁 | +751.9 | +416.2 | +0.06 |
碳酸锂 | 0 | 0 | +71.8 |
磷酸锂 | 0 | +15.5 | +10.4 |
难溶渣 | +16.9 | +13.7 | +0.96 |
二浸渣 | +4.8 | +9.6 | +0.43 |
提锂液 | 0 | 0 | +0.3 |
洗涤水(系统循环) | +5.7 | +9.8 | +3.8 |
平衡率 | 99.35% | 98.64% | 99.94% |
Table 6 Balancing calculations of each element from the expending test
项目 | 投加或产出/kg | ||
---|---|---|---|
Fe | P | Li | |
废旧LFP/C粉料 | -638.6 | -390.6 | -87.8 |
浓磷酸 | 0 | -51.5 | 0 |
工业铁粉 | -90.3 | 0 | 0 |
磷酸二氢钠 | 0 | -29.1 | 0 |
副产亚铁 | -55.5 | 0 | 0 |
磷酸铁 | +751.9 | +416.2 | +0.06 |
碳酸锂 | 0 | 0 | +71.8 |
磷酸锂 | 0 | +15.5 | +10.4 |
难溶渣 | +16.9 | +13.7 | +0.96 |
二浸渣 | +4.8 | +9.6 | +0.43 |
提锂液 | 0 | 0 | +0.3 |
洗涤水(系统循环) | +5.7 | +9.8 | +3.8 |
平衡率 | 99.35% | 98.64% | 99.94% |
序号 | 消耗/产生 | 参考价格 | 消耗/产出量 | 费用/CNY | |
---|---|---|---|---|---|
17 | 总利润 | +14013 CNY | |||
1 | 废旧LFP/C粉料 | 13000 CNY/t | -2.0 t | -26000 | |
2 | 硫酸 | 200 CNY/t | -2.0 t | -400 | |
3 | 磷酸 | 6800 CNY/t | -170 kg | -1156 | |
4 | 工业铁粉 | 2500 CNY/t | -110 kg | -275 | |
5 | 自来水 | 4.1 CNY/m3 | -10 m3 | -41 | |
6 | 磷酸二氢钠 | 5800 CNY/t | -150 kg | -870 | |
7 | 双氧水 | 1250 CNY/m3 | -1.2 m3 | -1500 | |
8 | 氢氧化钠 | 3500 CNY/t | -3.2 t | -11200 | |
9 | 碳酸钠 | 2950 CNY/t | -750 kg | -2212 | |
10 | 副产亚铁 | 400 CNY/t | -270 kg | -108 | |
11 | 一般固废处理 | 300 CNY/t | 1.0 t | -300 | |
12 | 危废处理 | 3000 CNY/t | 300 kg | -900 | |
13 | 电池用磷酸铁 | 11000 CNY/t | 1.20 t | +13200 | |
14 | 陶瓷用磷酸铁 | 6000 CNY/t | 840 kg | +5040 | |
15 | 电池级碳酸锂 | 93000 CNY/t | 385 kg | +35805 | |
16 | 磷酸锂 | 85000 CNY/t | 58 kg | +4930 |
Table 7 The input and output for processing 2.0 t of spent LFP/C
序号 | 消耗/产生 | 参考价格 | 消耗/产出量 | 费用/CNY | |
---|---|---|---|---|---|
17 | 总利润 | +14013 CNY | |||
1 | 废旧LFP/C粉料 | 13000 CNY/t | -2.0 t | -26000 | |
2 | 硫酸 | 200 CNY/t | -2.0 t | -400 | |
3 | 磷酸 | 6800 CNY/t | -170 kg | -1156 | |
4 | 工业铁粉 | 2500 CNY/t | -110 kg | -275 | |
5 | 自来水 | 4.1 CNY/m3 | -10 m3 | -41 | |
6 | 磷酸二氢钠 | 5800 CNY/t | -150 kg | -870 | |
7 | 双氧水 | 1250 CNY/m3 | -1.2 m3 | -1500 | |
8 | 氢氧化钠 | 3500 CNY/t | -3.2 t | -11200 | |
9 | 碳酸钠 | 2950 CNY/t | -750 kg | -2212 | |
10 | 副产亚铁 | 400 CNY/t | -270 kg | -108 | |
11 | 一般固废处理 | 300 CNY/t | 1.0 t | -300 | |
12 | 危废处理 | 3000 CNY/t | 300 kg | -900 | |
13 | 电池用磷酸铁 | 11000 CNY/t | 1.20 t | +13200 | |
14 | 陶瓷用磷酸铁 | 6000 CNY/t | 840 kg | +5040 | |
15 | 电池级碳酸锂 | 93000 CNY/t | 385 kg | +35805 | |
16 | 磷酸锂 | 85000 CNY/t | 58 kg | +4930 |
1 | Liu J H, Meng Z. Innovation model analysis of new energy vehicles: taking Toyota, Tesla and BYD as an example[J]. Procedia Engineering, 2017, 174: 965-972. |
2 | Li K P, Wang L. Optimal electric vehicle subsidy and pricing decisions with consideration of EV anxiety and EV preference in green and non-green consumers[J]. Transportation Research Part E: Logistics and Transportation Review, 2023, 170: 103010. |
3 | Ma J H, Hou Y M, Wang Z X, et al. Pricing strategy and coordination of automobile manufacturers based on government intervention and carbon emission reduction[J]. Energy Policy, 2021, 148: 111919. |
4 | Ji X Y, Wu T, Wang C, et al. A novel optimization method for high-penetration electric vehicles integration to electrical distribution network[J]. Frontiers in Energy Research, 2022, 10: 1012192. |
5 | Hou F Y, Yao F, Li Z. A torque-compensated fault-tolerant control method for electric vehicle traction motor with short-circuit fault[J]. Sustainability, 2022, 14(21): 13853. |
6 | Xu Z R, Gao L B, Liu Y J, et al. Review—recent developments in the doped LiFePO4 cathode materials for power lithium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(13): A2600-A2610. |
7 | Jyoti J, Singh B P, Tripathi S K. Recent advancements in development of different cathode materials for rechargeable lithium ion batteries[J]. Journal of Energy Storage, 2021, 43: 103112. |
8 | Wang W, Wu Y F. An overview of recycling and treatment of spent LiFePO4 batteries in China[J]. Resources, Conservation and Recycling, 2017, 127: 233-243. |
9 | Srivastava V, Rantala V, Mehdipour P, et al. A comprehensive review of the reclamation of resources from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 474: 145822. |
10 | Rautela R, Yadav B R, Kumar S. A review on technologies for recovery of metals from waste lithium-ion batteries[J]. Journal of Power Sources, 2023, 580: 233428. |
11 | Liang Q, Yue H F, Wang S F, et al. Recycling and crystal regeneration of commercial used LiFePO4 cathode materials[J]. Electrochimica Acta, 2020, 330: 135323. |
12 | Sun Q F, Li X L, Zhang H Z, et al. Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route[J]. Journal of Alloys and Compounds, 2020, 818: 153292. |
13 | Lan Y, Li X, Zhou G, et al. Direct regenerating cathode materials from spent lithium-ion batteries[J]. Advanced Science, 2024, 11(1): e2304425. |
14 | Yang T Z, Luo D, Yu A P, et al. Enabling future closed-loop recycling of spent lithium-ion batteries: direct cathode regeneration[J]. Advanced Materials, 2023, 35(36): e2203218. |
15 | Zhou F, Maxisch T, Ceder G. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LiFePO4 [J]. Physical Review Letters, 2006, 97(15): 155704. |
16 | 周弋惟, 陈卓, 徐建鸿. 湿法冶金回收废旧锂电池正极材料的研究进展[J]. 化工学报, 2022, 73(1): 85-96. |
Zhou Y W, Chen Z, Xu J H. Progress and prospect of recycling spent lithium battery cathode materials by hydrometallurgy[J]. CIESC Journal, 2022, 73(1): 85-96. | |
17 | 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340. |
He L P, Sun S Y, Yu J G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340. | |
18 | Zhang J L, Hu J T, Liu Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
19 | Yang Y X, Meng X Q, Cao H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
20 | Yan T T, Zhong S W, Zhou M M, et al. High-efficiency method for recycling lithium from spent LiFePO4 cathode[J]. Nanotechnology Reviews, 2020, 9(1): 1586-1593. |
21 | Wang X J, Zheng S L, Zhang Y, et al. Sulfuric acid leaching of ball-milling activated FePO4 residue after lithium extraction from spent lithium iron phosphate cathode powder[J]. Waste Management, 2022, 153: 31-40. |
22 | Yu W H, Guo Y, Shang Z, et al. A review on comprehensive recycling of spent power lithium-ion battery in China[J]. eTransportation, 2022, 11: 100155. |
23 | 肖忠良, 尹碧露, 宋刘斌, 等. 废旧锂离子电池回收工艺研究进展及其安全风险分析[J]. 化工学报, 2023, 74(4): 1446-1456. |
Xiao Z L, Yin B L, Song L B, et al. Research progress of waste lithium-ion battery recycling process and its safety risk analysis[J]. CIESC Journal, 2023, 74(4): 1446-1456. | |
24 | Wu Y, Zhou K G, Zhang X K, et al. Al/Ti removal from the sulfate leachate of the spent LiFePO4/C powder through high-temperature co-precipitation triggered by Fe(Ⅲ)[J]. Industrial & Engineering Chemistry Research, 2023, 62(35): 13902-13910. |
25 | Wu Y, Zhou K G, Zhang X K, et al. Aluminum separation by sulfuric acid leaching-solvent extraction from Al-bearing LiFePO4/C powder for recycling of Fe/P[J]. Waste Management, 2022, 144: 303-312. |
26 | Mrozik W, Ali Rajaeifar M, Heidrich O, et al. Environmental impacts, pollution sources and pathways of spent lithium-ion batteries[J]. Energy & Environmental Science, 2021, 14(12): 6099-6121. |
27 | Lou W B, Zhang Y, Zhang Y, et al. A facile way to regenerate FePO4∙2H2O precursor from spent lithium iron phosphate cathode powder: spontaneous precipitation and phase transformation in an acidic medium[J]. Journal of Alloys and Compounds, 2021, 856: 158148. |
28 | Xu Y Z, Yan X M, Fan L, et al. Remediation of Cd(Ⅱ)-contaminated soil by three kinds of ferrous phosphate nanoparticles[J]. RSC Advances, 2016, 6(21): 17390-17395. |
29 | Lou W B, Zhang Y, Zhang Y, et al. Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(3): 817-831. |
30 | Xiao C, Zeng L. Thermodynamic study on recovery of lithium using phosphate precipitation method[J]. Hydrometallurgy, 2018, 178: 283-286. |
31 | Iuliano M, Ciavatta L, de Tommaso G. The solubility constant of variscite[J]. Soil Science Society of America Journal, 2008, 72(2): 343-346. |
32 | Jiang Y, Zhang G P, Zhou K G, et al. Sequential separation and recovery of phosphorus and lithium from lithium phosphate slag by selective extraction-precipitation[J]. Separation and Purification Technology, 2024, 333: 125907. |
33 | Jiang Y, Peng C H, Zhou K G, et al. Recovery of iron from titanium white waste for the preparation of LiFePO4 battery[J]. Journal of Cleaner Production, 2023, 415: 137817. |
[1] | Jihao WU, Tao CHEN, Siyu LIU, Mengke LIU, Juan YANG. Preparation of pitch-based hard carbon by bi-functional activation strategy for sodium-ion batteries [J]. CIESC Journal, 2024, 75(3): 1019-1027. |
[2] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[3] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[4] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
[5] | Peipei CHEN, Qiuying WANG, Zeqing XIAO, Sijia ZHOU, Xiaoliang ZHANG. Tailoring preparation of graphene quantum dot composite membranes: influence of precursors [J]. CIESC Journal, 2023, 74(12): 5006-5015. |
[6] | Yuzhe LIU, Chengcai LI, Lin LI, Shaohui WANG, Peihui LIU, Tonghua WANG. Structure-property relationship between microstructure of activated carbon and supercapacitor performance [J]. CIESC Journal, 2022, 73(4): 1807-1816. |
[7] | Dong JI, Jian WANG, Ke WANG, Jingwei LI, Wenliang MENG, Yong YANG, Guixian LI, Dongliang WANG, Huairong ZHOU. Process research of methanol production by CO2 coupled green hydrogen with different CO2 capture technologies [J]. CIESC Journal, 2022, 73(10): 4565-4575. |
[8] | Boyang REN, Xiaogang CHE, Siyu LIU, Man WANG, Xinghua HAN, Ting DONG, Juan YANG. Preparation of coal-based porous carbon nanosheets by molten salt strategy as anodes for sodium-ion batteries [J]. CIESC Journal, 2022, 73(10): 4745-4753. |
[9] | Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle [J]. CIESC Journal, 2021, 72(9): 4487-4495. |
[10] | GAO Zixi, GUO Shuqi, FEI Qiang. Recent progress in microbial bioconversion of greenhouse gases into single cell protein [J]. CIESC Journal, 2021, 72(6): 3202-3214. |
[11] | Yuting SHI, Lin HUANGFU, Changming LI, Yue WANG, Shiqiu GAO, Xiaoguang SAN, Zhennan HAN, Jian YU. Preparation and pilot-scale test of V2O5-MoO3/TiO2 catalytic filter bag [J]. CIESC Journal, 2021, 72(11): 5598-5606. |
[12] | Jing LI, Gang DU, Juanjuan YIN. Current situation and economic analysis of waste battery recycling industry [J]. CIESC Journal, 2020, 71(S1): 494-500. |
[13] | Qing YANG, Simin XU, Dawei ZHANG, Qingchun YANG. Techno-economic analysis of oil and coal to ethylene glycol processes [J]. CIESC Journal, 2020, 71(5): 2164-2172. |
[14] | Yu CAO, Le WANG, Chao JI, Yanzhao HUANG, Zhilei XUE, Jianming LU, Hong QI. Pilot-scale application on dissipation of smoke plume from flue gas using ceramic membrane condensers [J]. CIESC Journal, 2019, 70(6): 2192-2201. |
[15] | Lihong WEI, Liangzhen GUO, Jinyuan JIANG, Meijia LIU, Tianhua YANG. Influence of Fe2O3 on glycine pyrolysis characteristics and nitrogen conversion [J]. CIESC Journal, 2019, 70(5): 1942-1950. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 349
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 262
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||