CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4815-4824.DOI: 10.11949/0438-1157.20240513
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Xudong CHEN(), Weidong FU, Jinjin LI(
), Ling ZHAO, Zhenhao XI(
)
Received:
2024-05-11
Revised:
2024-08-13
Online:
2025-01-03
Published:
2024-12-25
Contact:
Jinjin LI, Zhenhao XI
通讯作者:
李锦锦,奚桢浩
作者简介:
陈旭东(1997—),男,硕士研究生, chxd10152139@163.com
基金资助:
CLC Number:
Xudong CHEN, Weidong FU, Jinjin LI, Ling ZHAO, Zhenhao XI. Synthesis of amphiphilic polyphosphoester-PTX prodrug and its potential in reduction-responsive drug release[J]. CIESC Journal, 2024, 75(12): 4815-4824.
陈旭东, 付伟东, 李锦锦, 赵玲, 奚桢浩. 聚磷酸酯-紫杉醇前药合成及其还原响应药物释放研究[J]. 化工学报, 2024, 75(12): 4815-4824.
1 | Albert A. Chemical aspects of selective toxicity[J]. Nature, 1958, 182(4633): 421-423. |
2 | Ekladious I, Colson Y L, Grinstaff M W. Polymer-drug conjugate therapeutics: advances, insights and prospects[J]. Nature Reviews Drug Discovery, 2019, 18(4): 273-294. |
3 | 冯霞, 梁世乐, 李晓锋, 等. 聚乙二醇支载紫杉醇给药系统的制备与抗癌活性[J]. 化工学报, 2003, 54(2): 209-214. |
Feng X, Liang S L, Li X F, et al. Preparation and antitumor effect of drug delivery system of taxol conjugated to polyethylene glycol[J]. CIESC Journal, 2003, 54(2): 209-214. | |
4 | Guerassimoff L, Ferrere M, Bossion A, et al. Stimuli-sensitive polymer prodrug nanocarriers by reversible-deactivation radical polymerization[J]. Chemical Society Reviews, 2024, 53(12): 6511-6567. |
5 | Lin C, Liang Y X, Guo M Y, et al. Stimuli-responsive polyprodrug for cancer therapy[J]. Materials Today Advances, 2022, 15: 100266. |
6 | Liu N X, Chen Q H, Zhang Q Q, et al. The application of prodrug-based drug delivery strategy in anticancer drugs[J]. Current Topics in Medicinal Chemistry, 2021, 21(24): 2184-2204. |
7 | Deng Z Y, Liu S Y. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles[J]. Journal of Controlled Release, 2020, 326: 276-296. |
8 | Du H L, Zhao S, Wang Y Q, et al. pH/cathepsin B hierarchical-responsive nanoconjugates for enhanced tumor penetration and chemo-immunotherapy[J]. Advanced Functional Materials, 2020, 30(39): 2003757. |
9 | Sun H L, Zhong Z Y. 100th anniversary of macromolecular science viewpoint: biological stimuli-sensitive polymer prodrugs and nanoparticles for tumor-specific drug delivery[J]. ACS Macro Letters, 2020, 9(9): 1292-1302. |
10 | Li D, Song Y, He J L, et al. Polymer-doxorubicin prodrug with biocompatibility, pH response, and main chain breakability prepared by catalyst-free click reaction[J]. ACS Biomaterials Science & Engineering, 2019, 5(5): 2307-2315. |
11 | Wu G Y, Lupton J R, Turner N D, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition, 2004, 134(3): 489-492. |
12 | Kuppusamy P, Li H Q, Ilangovan G, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels[J]. Cancer Research, 2002, 62(1): 307-312. |
13 | Zhao J T, Li X M, Ma T, et al. Glutathione-triggered prodrugs: design strategies, potential applications, and perspectives[J]. Medicinal Research Reviews, 2024, 44(3): 1013-1054. |
14 | Luo L, Qi Y M, Zhong H, et al. GSH-sensitive polymeric prodrug: synthesis and loading with photosensitizers as nanoscale chemo-photodynamic anti-cancer nanomedicine[J]. Acta Pharmaceutica Sinica B, 2022, 12(1): 424-436. |
15 | Li Y H, Wu Y X, Chen J T, et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy[J]. Nano Letters, 2019, 19(8): 5806-5817. |
16 | Yilmaz Z E, Jérôme C. Polyphosphoesters: new trends in synthesis and drug delivery applications[J]. Macromolecular Bioscience, 2016, 16(12): 1745-1761. |
17 | Bauer K N, Tee H T, Velencoso M M, et al. Main-chain poly(phosphoester)s: history, syntheses, degradation, bio-and flame-retardant applications[J]. Progress in Polymer Science, 2017, 73: 61-122. |
18 | Appukutti N, Serpell C J. High definition polyphosphoesters: between nucleic acids and plastics[J]. Polymer Chemistry, 2018, 9(17): 2210-2226. |
19 | Pelosi C, Tinè M R, Wurm F R. Main-chain water-soluble polyphosphoesters: multi-functional polymers as degradable PEG-alternatives for biomedical applications[J]. European Polymer Journal, 2020, 141: 110079. |
20 | Liu J Y, Huang W, Pang Y, et al. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy[J]. Angewandte Chemie International Edition, 2011, 50(39): 9162-9166. |
21 | Wang Y C, Yuan Y Y, Du J Z, et al. Recent progress in polyphosphoesters: from controlled synthesis to biomedical applications[J]. Macromolecular Bioscience, 2009, 9(12): 1154-1164. |
22 | Zhang F W, Zhang S Y, Pollack S F, et al. Improving paclitaxel delivery: in vitro and in vivo characterization of PEGylated polyphosphoester-based nanocarriers[J]. Journal of the American Chemical Society, 2015, 137(5): 2056-2066. |
23 | Zhang Q Q, He J L, Zhang M Z, et al. A polyphosphoester-conjugated camptothecin prodrug with disulfide linkage for potent reduction-triggered drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(24): 4922-4932. |
24 | Ma G Q, Liu J, He J L, et al. Dual-responsive polyphosphoester-doxorubicin prodrug containing a diselenide bond: synthesis, characterization, and drug delivery[J]. ACS Biomaterials Science & Engineering, 2018, 4(7): 2443-2452. |
25 | Liu J, He J L, Zhang M Z, et al. A synergistic polyphosphoester-based co-delivery system of the anticancer drug doxorubicin and the tumor suppressor gene p53 for lung cancer therapy[J]. Journal of Materials Chemistry B, 2018, 6(20): 3262-3273. |
26 | Dong S X, Sun Y, Liu J, et al. Multifunctional polymeric prodrug with simultaneous conjugating camptothecin and doxorubicin for pH/reduction dual-responsive drug delivery[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8740-8748. |
27 | Iwasaki Y, Yamaguchi E. Synthesis of well-defined thermoresponsive polyphosphoester macroinitiators using organocatalysts[J]. Macromolecules, 2010, 43(6): 2664-2666. |
28 | Clément B, Grignard B, Koole L, et al. Metal-free strategies for the synthesis of functional and well-defined polyphosphoesters[J]. Macromolecules, 2012, 45(11): 4476-4486. |
29 | Rheinberger T, Flögel U, Koshkina O, et al. Real-time 31P NMR reveals different gradient strengths in polyphosphoester copolymers as potential MRI-traceable nanomaterials[J]. Communications Chemistry, 2023, 6(1): 182. |
30 | Schöttler S, Landfester K, Mailänder V. Controlling the stealth effect of nanocarriers through understanding the protein corona[J]. Angewandte Chemie International Edition, 2016, 55(31): 8806-8815. |
31 | 张跃庭, 董岸杰, 邓联东, 等. 紫杉醇两亲性共聚物纳米胶束体外释药动力学[J]. 化工学报, 2004, 55(6): 952-957. |
Zhang Y T, Dong A J, Deng L D, et al. In vitro release kinetics of amphiphilic block copolymer nano-micelles loaded with paclitaxel[J]. CIESC Journal, 2004, 55(6): 952-957. | |
32 | Riva R, Shah U, Thomassin J M, et al. Design of degradable polyphosphoester networks with tailor-made stiffness and hydrophilicity as scaffolds for tissue engineering[J]. Biomacromolecules, 2020, 21(2): 349-355. |
33 | Jia L J, Li Z Y, Zheng D D, et al. A targeted and redox/pH-responsive chitosan oligosaccharide derivatives based nanohybrids for overcoming multidrug resistance of breast cancer cells[J]. Carbohydrate Polymers, 2021, 251: 117008. |
34 | Wang J, Huang S W, Zhang P C, et al. Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters[J]. International Journal of Pharmaceutics, 2003, 265(1/2): 75-84. |
35 | Li J J, Chen X D, Jiang J, et al. Synthesis of amphiphilic block polyphosphoester and exploring its potential in reduction-responsive drug release[J]. ACS Applied Polymer Materials, 2024, 6(1): 693-700. |
36 | Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect[J]. Advanced Drug Delivery Reviews, 2011, 63(3): 131-135. |
[1] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[2] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
[3] | Binglin BAI, Shen DU, Mingjia LI, Chuanqi ZHANG. Optical transmittance and electrical conductivity characteristics of single-walled carbon nanotube films based on water-phase exfoliation method [J]. CIESC Journal, 2024, 75(7): 2680-2687. |
[4] | Haiyan DU, Kai ZHU, Feng YOU, Jinfeng WANG, Yifan ZHAO, Nan ZHANG, Ying LI. Self-healing anti-freezing ionic hydrogel for strain sensors [J]. CIESC Journal, 2024, 75(7): 2709-2722. |
[5] | Han ZHANG, Shuning ZHANG, Ke LIU, Guanlong DENG. Particle size prediction of cobalt oxalate synthesis process based on slow feature analysis and least squares support vector regression [J]. CIESC Journal, 2024, 75(6): 2313-2321. |
[6] | Lulu ZHAO, Erjun TANG, Xuteng XING, Shaojie LIU, Xiaomeng CHU, Na HU, Ze ZHANG. Effects of POSS modified graphene oxide in anti-corrosion and hydrophobic properties of coatings [J]. CIESC Journal, 2024, 75(5): 1977-1986. |
[7] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[8] | Xiaoqing YAN, Ying ZHAO, Yuzhe ZHANG, Honghui OU, Qizhong HUANG, Huagui HU, Guidong YANG. Preparation of five-fold twinned copper nanowires@polypyrrole and their electrocatalytic conversion of nitrate to ammonia [J]. CIESC Journal, 2024, 75(4): 1519-1532. |
[9] | Wenhui ZHANG, Ruyi TANG, Xili CUI, Huabin XING. Fluorine spectrum analysis and structural characterization of Y-type perfluoropolyether carboxylic acid [J]. CIESC Journal, 2024, 75(4): 1718-1723. |
[10] | Xiao XUE, Minjing SHANG, Yuanhai SU. Advances on continuous-flow synthesis of drugs in microreactors [J]. CIESC Journal, 2024, 75(4): 1439-1454. |
[11] | Yuwei YANG, Min LI, Zhiying YAO, Qinlin SUN, Yang LIU, Dan GE, Bingbing SUN. Application and prospect of organoids-on-chip in the study of nano-drug delivery systems [J]. CIESC Journal, 2024, 75(4): 1209-1221. |
[12] | Kaixuan LIU, Qinyuan JIANG, Fei WANG, Run LI, Ping ZHU, Kangkang WANG, Yonglu ZANG, Yanlong ZHAO, Rufan ZHANG. Controlled synthesis of high-density ultralong carbon nanotubes: progress and prospects [J]. CIESC Journal, 2024, 75(4): 1355-1369. |
[13] | Ang LI, Zhenyu ZHAO, Hong LI, Xin GAO. Microwave induced construction of highly dispersed Pd/FeP catalysts and their electrocatalytic performance [J]. CIESC Journal, 2024, 75(4): 1594-1606. |
[14] | Keqing LIU, Yan CUI, Qiong YU, Likun CHEN, Yongchao ZHENG, Zhiwei QIAO, He ZHENG. Study on the mimic enzymatic performance of amino acid modified MOF-808 for nerve agents decontamination [J]. CIESC Journal, 2024, 75(2): 616-625. |
[15] | Yu CAO, Guohui ZHANG, Ang GAO, Xinyu DU, Jing ZHOU, Yongmao CAI, Xuan YU, Xiaoming YU. Research progress of two-dimensional MXene materials in solar cells and metal-ion batteries [J]. CIESC Journal, 2024, 75(2): 412-428. |
Viewed | ||||||
Full text 231
|
|
|||||
Abstract |
|
|||||