CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 95-107.DOI: 10.11949/0438-1157.20240262

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube

Dehui DU1(), Wei FENG1, Jianghui ZHANG1, Yanlong XIANG2, Gaopan QIAO2, Wei LI1,3()   

  1. 1.Department of Mechanical and Electrical Engineering, Qingdao University of Science and Technical, Qingdao 266061, Shandong, China
    2.Ningbo Jintian Copper Tube Co. , Ltd. , Ningbo 315000, Zhejiang, China
    3.Department of Energy Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2024-03-05 Revised:2024-03-29 Online:2024-12-17 Published:2024-12-25
  • Contact: Wei LI

微型翅片疏水复合强化管管内流动沸腾换热预测模型

杜得辉1(), 冯威1, 张江辉1, 项燕龙2, 乔高攀2, 李蔚1,3()   

  1. 1.青岛科技大学机电工程学院,山东 青岛 266061
    2.浙江宁波金田铜管有限公司,浙江 宁波 315000
    3.浙江大学能源工程学院,浙江 杭州 310027
  • 通讯作者: 李蔚
  • 作者简介:杜得辉(1999—),男,硕士研究生,4022030086@mails.qust.edu.cn
  • 基金资助:
    国家自然科学基金项目(52320105001)

Abstract:

The flow boiling heat transfer characteristics of the refrigerant in one smooth tube (ST tube) and three enhanced tubes were compared experimentally. The three enhanced tubes used in the experiment are respectively the heat transfer tube with hydrophobic surface (HYD tube), the heat transfer tube with herringbone microfin (HB tube) and the heat transfer tube with the composite structure of herringbone microfin and hydrophobic surface (HB/HYD tube). The experiments were carried out at saturation temperatures of 279, 283 and 288 K, mass flux ranging from 50 kg/(m2·s) to 150 kg/(m2·s), and inlet and outlet vapor quality maintained at 0.2 and 0.8, respectively. It can be seen from the analysis of the results that the average heat transfer coefficient of HB tube and HYD tube is about 1.37 and 1.42 times that of smooth tube, respectively, the HB/HYD tubes with composite surface structure have the highest heat transfer coefficient, about 1.45—1.63 times that of smooth tube. According to the measured heat transfer coefficient, six empirical prediction correlation models are selected and verified by smooth tube, which proves the reliability of the selected correlation models. Combined with the structural characteristics of the enhanced tubes, a new correlation model is developed, which can predict the heat transfer coefficient of the studied enhanced tubes well. About 90% of the data points of the three enhanced tubes are within the error range of ±10%, this optimizes the scheme of industrial design of heat exchanger, thereby improving the efficiency and reliability of heat exchanger.

Key words: phase change, gas-liquid flow, flow boiling, heat transfer, prediction model

摘要:

采用实验的方法对比制冷剂在一根光滑管(ST管)与三根强化管内的流动沸腾换热特性。实验所采用的三根强化管分别为具有疏水表面的换热管(HYD管)、具有人字形微翅片的换热管(HB管) 和同时具有人字形微翅片与疏水表面复合结构的换热管(HB/HYD管)。在饱和温度为279、283与288 K,质量流速范围为50~150 kg/(m2·s),进出口干度分别保持在0.2和0.8的工况下进行实验。从结果分析可以看出,HB管与HYD管的传热系数分别约为光滑管的1.37倍与1.42倍,而具有复合表面结构的HB/HYD管具有最高的传热系数,约为光滑管的1.45~1.63倍。针对所测传热系数选择了6种经验预测关联式模型,并利用光滑管进行验证,证明所选关联式可靠。结合强化管的结构特点开发新型关联式模型,该模型对所研究强化管的传热系数预测较好,三种强化管约有90%以上的数据点在误差范围为±10%以内,这对工业设计换热器的方案进行了优化,进而提高换热器的效率与可靠性。

关键词: 相变, 气液两相流, 流动沸腾, 换热, 预测模型

CLC Number: