CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 95-107.DOI: 10.11949/0438-1157.20240262
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Dehui DU1(), Wei FENG1, Jianghui ZHANG1, Yanlong XIANG2, Gaopan QIAO2, Wei LI1,3()
Received:
2024-03-05
Revised:
2024-03-29
Online:
2024-12-17
Published:
2024-12-25
Contact:
Wei LI
杜得辉1(), 冯威1, 张江辉1, 项燕龙2, 乔高攀2, 李蔚1,3()
通讯作者:
李蔚
作者简介:
杜得辉(1999—),男,硕士研究生,4022030086@mails.qust.edu.cn
基金资助:
CLC Number:
Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube[J]. CIESC Journal, 2024, 75(S1): 95-107.
杜得辉, 冯威, 张江辉, 项燕龙, 乔高攀, 李蔚. 微型翅片疏水复合强化管管内流动沸腾换热预测模型[J]. 化工学报, 2024, 75(S1): 95-107.
参数 | ST管 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|---|
长度/m | 1.7 | 1.7 | 1.7 | 1.7 |
厚度/mm | 0.61 | 0.61 | 0.61 | 0.61 |
翅片高度/mm | — | 0.052 | — | 0.052 |
翅片间距/mm | — | 0.636 | — | 0.636 |
螺旋角/(°) | — | 18 | — | 18 |
补强角/(°) | — | 161.4 | — | 161.4 |
Table 1 Geometric parameters of four test tubes
参数 | ST管 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|---|
长度/m | 1.7 | 1.7 | 1.7 | 1.7 |
厚度/mm | 0.61 | 0.61 | 0.61 | 0.61 |
翅片高度/mm | — | 0.052 | — | 0.052 |
翅片间距/mm | — | 0.636 | — | 0.636 |
螺旋角/(°) | — | 18 | — | 18 |
补强角/(°) | — | 161.4 | — | 161.4 |
饱和温度/K | 液相密度/ (kg/m3) | 气相密度/ (kg/m3) | 液相动力黏度/ (Pa·s) | 气相动力黏度/ (Pa·s) | 液态热导率/ [W/(m·K)] | 表面张力/ (N/m) | 汽化潜热/ (kJ/kg) |
---|---|---|---|---|---|---|---|
279 | 1034.2 | 26.714 | 0.000141 | 0.0000118 | 0.14053 | 0.0099381 | 305.66 |
283 | 1019.7 | 30.232 | 0.0001346 | 0.0000119 | 0.13741 | 0.009256 | 298.92 |
288 | 1280.8 | 35.19 | 0.00012731 | 0.00001226 | 0.13354 | 0.008417 | 290.19 |
Table 2 Basic physical parameters of R32 at different temperatures
饱和温度/K | 液相密度/ (kg/m3) | 气相密度/ (kg/m3) | 液相动力黏度/ (Pa·s) | 气相动力黏度/ (Pa·s) | 液态热导率/ [W/(m·K)] | 表面张力/ (N/m) | 汽化潜热/ (kJ/kg) |
---|---|---|---|---|---|---|---|
279 | 1034.2 | 26.714 | 0.000141 | 0.0000118 | 0.14053 | 0.0099381 | 305.66 |
283 | 1019.7 | 30.232 | 0.0001346 | 0.0000119 | 0.13741 | 0.009256 | 298.92 |
288 | 1280.8 | 35.19 | 0.00012731 | 0.00001226 | 0.13354 | 0.008417 | 290.19 |
测量参数 | 误差值 | 计算参数 | 误差值 |
---|---|---|---|
直径/mm | ± 0.02 | 质量流速/(kg/(m2·s)) | ± 1.47% |
长度/mm | ± 1 | 热通量/(W/m2) | ± 1.76% |
温度/K | ± 0.1 | 蒸汽质量 | ± 2.68% |
压力/kPa | 满量程±0.075% | 传热系数/(W/(m2·K)) | ± 9.15% |
水流量/(kg/h) | 观测值的± 0.35% | ||
制冷剂流量/(kg/h) | 观测值的±0.2% |
Table 3 Uncertainties of measuring parameters
测量参数 | 误差值 | 计算参数 | 误差值 |
---|---|---|---|
直径/mm | ± 0.02 | 质量流速/(kg/(m2·s)) | ± 1.47% |
长度/mm | ± 1 | 热通量/(W/m2) | ± 1.76% |
温度/K | ± 0.1 | 蒸汽质量 | ± 2.68% |
压力/kPa | 满量程±0.075% | 传热系数/(W/(m2·K)) | ± 9.15% |
水流量/(kg/h) | 观测值的± 0.35% | ||
制冷剂流量/(kg/h) | 观测值的±0.2% |
强化性能 | HB/HYD管 | 现有商业强化管 |
---|---|---|
强化结构 | 采用人字形翅片与疏水表面复合强化结构,其表面结构具有一定的螺旋角,流体流经时有一定的接触角 | 一般采用单一结构,为内螺纹、凹坑、微翅片或涂层结构 |
强化原理 | 人字形微翅片强化结构可增加流体的换热面积,削弱了流体的表面张力,使流体分布均匀,翅片的存在增加了二次流,使得换热更充分。疏水表面,可增加成核位点的数量。二者共同作用,从而强化换热 | 一般是增加成核位点、增加换热面积或者促进形成涡流等 |
传热系数 | 提高,并且其疏水表面结构可以减少换热阻力 | 提高,但压降阻力也会增加 |
耐腐蚀性 | 采用不锈钢304L,具有耐腐蚀性能 | 一般为铜管,随着使用时间的增加,对腐蚀的敏感程度也会增加 |
Table 4 Comparison of strengthening performance between HB/HYD tube and existing commercial enhanced tube
强化性能 | HB/HYD管 | 现有商业强化管 |
---|---|---|
强化结构 | 采用人字形翅片与疏水表面复合强化结构,其表面结构具有一定的螺旋角,流体流经时有一定的接触角 | 一般采用单一结构,为内螺纹、凹坑、微翅片或涂层结构 |
强化原理 | 人字形微翅片强化结构可增加流体的换热面积,削弱了流体的表面张力,使流体分布均匀,翅片的存在增加了二次流,使得换热更充分。疏水表面,可增加成核位点的数量。二者共同作用,从而强化换热 | 一般是增加成核位点、增加换热面积或者促进形成涡流等 |
传热系数 | 提高,并且其疏水表面结构可以减少换热阻力 | 提高,但压降阻力也会增加 |
耐腐蚀性 | 采用不锈钢304L,具有耐腐蚀性能 | 一般为铜管,随着使用时间的增加,对腐蚀的敏感程度也会增加 |
文献 | 公式 |
---|---|
Shah[ | |
Chaddock等[ | |
Kandlikar[ | |
Kandlikar and Balasabramanian[ | |
Kuang等[ | |
Schrock等[ |
Table 5 Correlation model for heat transfer coefficient prediction
文献 | 公式 |
---|---|
Shah[ | |
Chaddock等[ | |
Kandlikar[ | |
Kandlikar and Balasabramanian[ | |
Kuang等[ | |
Schrock等[ |
误差 | Shah等[ | Chaddock等[ | Kandlikar等[ | Kandlikar[ | Kuang等[ | Shrock等[ |
---|---|---|---|---|---|---|
MAE | 13.3% | 11.45% | 26.3% | 20.9% | 21.8% | 21.2% |
MRE | -11.5% | 8.41% | 26.3% | -18.7% | 21.8% | 21.2% |
Table 6 Deviations between experimental and predicted values of smooth tube
误差 | Shah等[ | Chaddock等[ | Kandlikar等[ | Kandlikar[ | Kuang等[ | Shrock等[ |
---|---|---|---|---|---|---|
MAE | 13.3% | 11.45% | 26.3% | 20.9% | 21.8% | 21.2% |
MRE | -11.5% | 8.41% | 26.3% | -18.7% | 21.8% | 21.2% |
强化管 | a | b | c | d | e |
---|---|---|---|---|---|
HB管 | 192 | 0.244 | 0.068 | 0.128 | 0.126 |
HYD管 | 600 | 0.2 | -0.085 | 0.368 | 0.055 |
HB/HYD管 | 1110 | 0.233 | 0.06 | -0.151 | 0.492 |
Table 7 Values of undetermined coefficients of the new correlation
强化管 | a | b | c | d | e |
---|---|---|---|---|---|
HB管 | 192 | 0.244 | 0.068 | 0.128 | 0.126 |
HYD管 | 600 | 0.2 | -0.085 | 0.368 | 0.055 |
HB/HYD管 | 1110 | 0.233 | 0.06 | -0.151 | 0.492 |
误差 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|
MAE | 4.97% | 4.95% | 4.14% |
MRE | -1.32% | 0.67% | -0.53% |
Table 8 Deviations between the experimental value of the enhanced tube and the predicted value of the new correlation
误差 | HB管 | HYD管 | HB/HYD管 |
---|---|---|---|
MAE | 4.97% | 4.95% | 4.14% |
MRE | -1.32% | 0.67% | -0.53% |
1 | Shafaee M, Mashouf H, Sarmadian A, et al. Evaporation heat transfer and pressure drop characteristics of R-600a in horizontal smooth and helically dimpled tubes[J]. Applied Thermal Engineering, 2016, 107: 28-36. |
2 | Kukulka D J, Yan H, Smith R, et al. Condensation and evaporation characteristics of flows inside three dimensional Vipertex enhanced heat transfer tubes[J]. Chemical Engineering Transaction, 2017, 61: 1777-1782. |
3 | Kim M H, Shin J S. Evaporating heat transfer of R22 and R410A in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2005, 28(6): 940-948. |
4 | 张丹亭, 陶乐仁, 李庆普, 等. R32在水平强化管内的流动沸腾换热特性研究[J]. 热能动力工程, 2019, 34(3): 97-102+133. |
Zhang D T, TAO L R, Li Q P, et al. Study on the convective heat transfer of R32 inside horizontal enhanced tubes[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(3): 97-102+133. | |
5 | 唐苇羽, 陈景祥, 韩锦程, 等.不同强化换热管内流动沸腾换热特性对比[J]. 浙江大学学报(工学版), 2018, 52(6): 1216-1222. |
Tang W Y, Chen J X, Han J C, et al. Comparison of flow boiling heat transfer characteristics inside different enhanced heat transfer tubes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1216-1222. | |
6 | Jige D, Sagawa K, Inoue N. Effect of tube diameter on boiling heat transfer and flow characteristic of refrigerant R32 in horizontal small-diameter tubes[J]. International Journal of Refrigeration, 2017, 76: 206-218. |
7 | Vidhyarthi N K, Deb S, Gajghate S S, et al. A comprehensive assessment of two-phase flow boiling heat transfer in micro-fin tubes using pure and blended eco-friendly refrigerants[J]. Energies, 2023, 16(4): 1951. |
8 | 郭雨, 顾宗保, 张传财, 等. 不锈钢三维强化管管内流动沸腾与冷凝传热实验[J]. 青岛科技大学学报(自然科学版), 2020, 41(5): 102-108. |
Guo Y, Gu Z B, Zhang C C, et al. Experiments on flow boiling and condensation heat transfer in stainless steel three-dimensional enhanced tubes[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2020, 41(5): 102-108. | |
9 | Kim N H. Evaporation heat transfer and pressure drop of R-410A in three 7.0 mm O.D. microfin tubes having different inside geometries[J]. Journal of Mechanical Science and Technology, 2015, 29(8): 3519-3530. |
10 | He G G, Zhou S, Li D D, et al. Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J]. International Journal of Heat and Mass Transfer, 2018, 125: 943-958. |
11 | Li W. Two-phase heat transfer correlations in three-dimensional hierarchical tube[J]. International Journal of Heat and Mass Transfer, 2022, 191: 122827. |
12 | Luo X L, Xia Y K, Huang J K, et al. Experimental investigation on high-temperature flow boiling heat transfer characteristics of R245fa in a horizontal circular tube[J]. Applied Thermal Engineering, 2023, 225: 120260. |
13 | Gungor K E, Winterton R H S. A general correlation for flow boiling in tubes and annuli[J]. Heat Mass Transf, 1986, 29(3): 351-358. |
14 | Kundu A, Kumar R, Gupta A. Comparative experimental study on flow boiling heat transfer characteristics of pure and mixed refrigerants[J]. International Journal of Refrigeration, 2014, 45: 136-147. |
15 | Kandlikar S G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer. ASME, 1990, 112(1): 219-228. |
16 | Fang X D, Wu Q, Yuan Y L. A general correlation for saturated flow boiling heat transfer in channels of various sizes and flow directions[J]. International Journal of Heat and Mass Transfer, 2017, 107: 972-981. |
17 | Saitoh S, Daiguji H, Hihara E. Correlation for boiling heat transfer of R-134a in horizontal tubes including effect of tube diameter[J]. International Journal of Heat and Mass Transfer, 2007, 50(25/26): 5215-5225. |
18 | Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. |
19 | 冯龙龙, 钟珂, 张羽森, 等. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509. |
Feng L L, Zhong K, Zhang Y S, et al. Flow boiling heat transfer characteristics of R1234yf in horizontal microchannel[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3502-3509. | |
20 | 仇富强, 李庆普. 微肋管内R513a流动沸腾换热特性实验研究[J]. 六盘水师范学院学报, 2022, 34(2): 104-111. |
Qiu F Q, Li Q P. Experimental investigation on flow boiling heat transfer characteristics inside the micro-fin tube[J]. Journal of Liupanshui Normal University, 2022, 34(2): 104-111. | |
21 | 苑云潇, 张良, 柳建华. R1234yf与R134a小管径内流动沸腾换热特性研究[J]. 化学工程, 2021, 49(5): 38-42. |
Yuan Y X, Zhang L, Liu J H. Flow boiling heat transfer characteristics of R1234yf and R134a in small-diameter tubes[J]. Chemical Engineering (China), 2021, 49(5): 38-42. | |
22 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16(2): 359-367. |
23 | Petukhov B S. Heat transfer and friction in turbulent pipe flow with variable physical properties[M]//Advances in Heat Transfer. Amsterdam:Elsevier, 1970: 503-564. |
24 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal Fluid Science 1988, 1: 3-17. |
25 | Shah M M. Chart correlation for saturated boiling heat transfer: equations and further study[J].Ashrae Transactions, 1982, 88(1): 185-187. |
26 | Chaddock J B, Brunemann H. Forced convection of refrigerants in horizontal tubes[J]. School of Engineering, Duke University, 1967, HL-113. |
27 | Kandlikar S G, Balasubramanian P. An extension of the flow boiling correlation to transition, laminar, and deep laminar flows in minichannels and microchannels[J]. Heat Transfer Engineering, 2004, 25(3): 86-93. |
28 | Kuang Y W, Han F, Sun L J, et al. Saturated hydrogen nucleate flow boiling heat transfer coefficients study based on artificial neural network[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121406. |
29 | Schrock V E, Grossman L M. Forced convection boiling in tubes[J]. Nuclear Science and Engineering, 1962, 12(4): 474-481. |
30 | Dittus F W, Boelter L M K. Heat transfer in automobile radiators of the tubular type[J]. International Communications in Heat and Mass Transfer, 1985, 12(1): 3-22. |
[1] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[2] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
[3] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[4] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[5] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[6] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[7] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[8] | Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management [J]. CIESC Journal, 2024, 75(S1): 126-134. |
[9] | Chaowei CHEN, Yang LIU, Wenjing DU, Jinbo LI, Dakuo SHI, Gongming XIN. Flow and heat transfer characteristics of micro ribs channel with local hot spots [J]. CIESC Journal, 2024, 75(9): 3113-3121. |
[10] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[11] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[12] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[13] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[14] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[15] | Yufei MAO, Fei CAO, Yanqin SHANGGUAN. Computing method for convection heat transfer of supercritical pressure fluid in turbulent pipe flow [J]. CIESC Journal, 2024, 75(8): 2821-2830. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||