CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3137-3152.DOI: 10.11949/0438-1157.20241356

• Reviews and monographs • Previous Articles     Next Articles

Research and prospect of early warning and diagnosis technology for ORC power generation system process

Jinjiang WANG1,2,3(), Zhenjie LU1,3, Weizheng AN4, Fengyun YANG2,4, Xiaogang QIN4   

  1. 1.College of Artificial Intelligence, China University of Petroleum, Beijing 102249, China
    2.College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China
    3.Key Laboratory of Oil and Gas Production Equipment Quality Inspection and Health Diagnosis, State Administration for Market Regulation, Beijing 102249, China
    4.CNOOC Research Institute Co. , Ltd. , Beijing 100028, China
  • Received:2024-11-25 Revised:2024-12-29 Online:2025-08-13 Published:2025-07-25
  • Contact: Jinjiang WANG

ORC发电系统工艺过程预警诊断技术研究与展望

王金江1,2,3(), 鲁振杰1,3, 安维峥4, 杨风允2,4, 秦小刚4   

  1. 1.中国石油大学(北京)人工智能学院,北京 102249
    2.中国石油大学(北京)安全与海洋工程学院,北京 102249
    3.国家市场监督管理总局重点实验室(油气生产装备质量检测与健康诊断),北京 102249
    4.中海油研究总院有限责任公司,北京 100028
  • 通讯作者: 王金江
  • 作者简介:王金江(1981—),男,博士,教授,jwang@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(52234007);国家科技重大专项课题(2024ZD1403305)

Abstract:

Organic Rankine cycle (ORC), as an advanced thermal energy conversion technology, has attracted much attention due to its wide application in the fields of recovering low-grade thermal energy, geothermal energy, solar energy, etc. With the development of automation and artificial intelligence technology in recent years, ORC systems have gradually realized the transformation of whole process automation and intelligence, but the research on the early warning and diagnosis of ORC system process is seriously insufficient. In this context, the paper first introduces the representation method and characteristics of process time series data. Secondly, the application of modeling technology based on analytical models, knowledge-driven, and data-driven in early warning and diagnosis is discussed. Finally, the challenges faced by the application of current technology in the process of ORC systems in the four levels of data, model, system and application are analyzed, and the future research directions are put forward. It aims to promote the technological progress and industrial application of ORC systems in the industrial field, and provide theoretical basis and technical support for the realization of a safer, more efficient and intelligent energy conversion systems.

Key words: process system, process control, organic Rankine cycle, early warning diagnosis, neural network

摘要:

有机朗肯循环(organic Rankine cycle,ORC)作为一种先进的热能转换技术,因其在回收低品位热能、地热能、太阳能等领域的广泛应用而备受关注。近年来,随着自动化与人工智能技术的发展,ORC系统逐渐实现了全流程自动化和智能化的系统转型,但针对ORC系统工艺过程预警诊断的研究严重不足。在这一背景下,首先介绍了工艺时序数据的表示方法和特性;其次,探讨了基于解析模型、知识驱动与数据驱动的建模技术在预警诊断中的应用;最后,分析了当前技术应用于ORC系统工艺过程在数据、模型、系统和应用四个层面所面临的挑战,并提出了未来研究方向。旨在促进ORC系统在工业领域的技术进步和工业应用,为实现更安全、高效和智能的能源转换系统提供理论基础和技术支持。

关键词: 过程系统, 过程控制, 有机朗肯循环, 预警诊断, 神经网络

CLC Number: