CIESC Journal ›› 2025, Vol. 76 ›› Issue (8): 4228-4238.DOI: 10.11949/0438-1157.20250159
• Energy and environmental engineering • Previous Articles Next Articles
Yunhao LI1,2(
), Chungang XU1,2(
), Xiaosen LI1,2, Jun FU1,2, Yi WANG1,2, Zhaoyang CHEN1,2
Received:2025-02-21
Revised:2025-05-07
Online:2025-09-17
Published:2025-08-25
Contact:
Chungang XU
李云昊1,2(
), 徐纯刚1,2(
), 李小森1,2, 付骏1,2, 王屹1,2, 陈朝阳1,2
通讯作者:
徐纯刚
作者简介:李云昊(2000—),男,硕士研究生,liyunhao@mail.ustc.edu.cn
基金资助:CLC Number:
Yunhao LI, Chungang XU, Xiaosen LI, Jun FU, Yi WANG, Zhaoyang CHEN. Study on the effect of solid-liquid blended promoters on the formation of CO2 hydrates in saline water system[J]. CIESC Journal, 2025, 76(8): 4228-4238.
李云昊, 徐纯刚, 李小森, 付骏, 王屹, 陈朝阳. 固液复配型促进剂对盐水体系CO2水合物形成影响研究[J]. 化工学报, 2025, 76(8): 4228-4238.
Add to citation manager EndNote|Ris|BibTeX
| Materials | Purity/% | Suppliers |
|---|---|---|
| CP | 98.0 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
| THF | 99.0 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
| NaCl | 99.5 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
Table 1 Chemical reagents used in the experiments
| Materials | Purity/% | Suppliers |
|---|---|---|
| CP | 98.0 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
| THF | 99.0 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
| NaCl | 99.5 | Aladdin Reagent Co., Ltd. (Shanghai, China) |
| Item | Liquid | P1/MPa | P2/MPa | t/s | nw/mol | ng/mmol | (ng/nw)/(mmol/mol) | v/(10-5 mmol/(mol·s)) |
|---|---|---|---|---|---|---|---|---|
| Sys1 (2.00%CP + 3.56%THF) | PW | 4.74 | 4.28 | 73000 | 1.11 | 9.01 | 8.11 | 12.3 |
| 4.72 | 4.25 | 71500 | 1.11 | 9.25 | 8.33 | 11.9 | ||
| 4.76 | 4.30 | 74200 | 1.11 | 8.85 | 7.97 | 10.8 | ||
| Sys2 (2.56%CP + 3.00%THF) | PW | 4.84 | 4.05 | 60000 | 1.11 | 26.90 | 24.21 | 44.8 |
| 4.82 | 4.02 | 61500 | 1.11 | 27.50 | 24.77 | 42.1 | ||
| 4.88 | 4.10 | 59900 | 1.11 | 26.20 | 23.60 | 40.3 | ||
| Sys3 (2.78%CP + 2.78%THF) | PW | 4.78 | 3.61 | 60000 | 1.11 | 34.73 | 31.30 | 57.9 |
| 4.80 | 3.58 | 62000 | 1.11 | 35.20 | 31.71 | 55.7 | ||
| 4.75 | 3.64 | 58500 | 1.11 | 34.10 | 30.72 | 53.6 | ||
| Sys4 (3.00%CP + 2.56%THF) | PW | 4.72 | 3.76 | 53000 | 1.11 | 31.64 | 28.48 | 57.7 |
| 4.74 | 3.73 | 54500 | 1.11 | 32.10 | 28.90 | 57.2 | ||
| 4.70 | 3.79 | 51800 | 1.11 | 31.20 | 28.11 | 54.3 | ||
| Sys5 (3.56%CP + 2.00%THF) | PW | 4.71 | 3.87 | 57000 | 1.11 | 28.85 | 25.97 | 50.6 |
| 4.73 | 3.84 | 58200 | 1.11 | 29.30 | 26.40 | 48.1 | ||
| 4.69 | 3.90 | 55800 | 1.11 | 28.40 | 25.59 | 47.3 | ||
| Sys6 (2.00%CP + 3.56%THF) | SW | 4.73 | 4.35 | 52800 | 1.11 | 4.61 | 4.15 | 8.73 |
| 4.71 | 4.32 | 54000 | 1.11 | 4.80 | 4.32 | 8.89 | ||
| 4.75 | 4.38 | 51200 | 1.11 | 4.45 | 4.01 | 7.82 | ||
| Sys7 (2.56%CP + 3.00%THF) | SW | 4.78 | 4.40 | 60565 | 1.11 | 5.41 | 4.87 | 8.44 |
| 4.79 | 4.38 | 62000 | 1.11 | 5.30 | 4.77 | 7.69 | ||
| 4.77 | 4.42 | 59000 | 1.11 | 5.55 | 5.00 | 8.47 | ||
| Sys8 (2.78%CP + 2.78%THF) | SW | 4.70 | 3.87 | 78640 | 1.11 | 23.14 | 20.83 | 29.40 |
| 4.72 | 3.85 | 80000 | 1.11 | 23.90 | 21.53 | 27.50 | ||
| 4.68 | 3.90 | 77000 | 1.11 | 22.80 | 20.54 | 26.70 | ||
| Sys9 (3.00%CP + 2.56%THF) | SW | 4.73 | 4.05 | 59500 | 1.11 | 22.54 | 20.30 | 37.9 |
| 4.75 | 4.02 | 60000 | 1.11 | 23.00 | 21.00 | 34.5 | ||
| 4.71 | 4.08 | 60200 | 1.11 | 22.10 | 20.70 | 34.3 | ||
| Sys10 (3.56%CP + 2.00%THF) | SW | 4.80 | 4.12 | 50080 | 1.11 | 22.69 | 20.43 | 45.3 |
| 4.82 | 4.10 | 51000 | 1.11 | 23.10 | 20.81 | 41.7 | ||
| 4.78 | 4.14 | 49500 | 1.11 | 22.30 | 20.09 | 40.6 | ||
| Yan, et al.[ | PW | 3.80 | 2.20 | 21600 | 9.45 | 260.63 | 27.58 | 142.0 |
| Li, et al.[ | PW | 3.60 | 2.51 | 108000 | 13.11 | 250.00 | 19.06 | 17.64 |
| Khandelwal, et al.[ | SW | 3.40 | 2.37 | 14400 | 2.00 | 37.44 | 18.72 | 139.93 |
Table 2 Data on hydrate formation indifferent systems
| Item | Liquid | P1/MPa | P2/MPa | t/s | nw/mol | ng/mmol | (ng/nw)/(mmol/mol) | v/(10-5 mmol/(mol·s)) |
|---|---|---|---|---|---|---|---|---|
| Sys1 (2.00%CP + 3.56%THF) | PW | 4.74 | 4.28 | 73000 | 1.11 | 9.01 | 8.11 | 12.3 |
| 4.72 | 4.25 | 71500 | 1.11 | 9.25 | 8.33 | 11.9 | ||
| 4.76 | 4.30 | 74200 | 1.11 | 8.85 | 7.97 | 10.8 | ||
| Sys2 (2.56%CP + 3.00%THF) | PW | 4.84 | 4.05 | 60000 | 1.11 | 26.90 | 24.21 | 44.8 |
| 4.82 | 4.02 | 61500 | 1.11 | 27.50 | 24.77 | 42.1 | ||
| 4.88 | 4.10 | 59900 | 1.11 | 26.20 | 23.60 | 40.3 | ||
| Sys3 (2.78%CP + 2.78%THF) | PW | 4.78 | 3.61 | 60000 | 1.11 | 34.73 | 31.30 | 57.9 |
| 4.80 | 3.58 | 62000 | 1.11 | 35.20 | 31.71 | 55.7 | ||
| 4.75 | 3.64 | 58500 | 1.11 | 34.10 | 30.72 | 53.6 | ||
| Sys4 (3.00%CP + 2.56%THF) | PW | 4.72 | 3.76 | 53000 | 1.11 | 31.64 | 28.48 | 57.7 |
| 4.74 | 3.73 | 54500 | 1.11 | 32.10 | 28.90 | 57.2 | ||
| 4.70 | 3.79 | 51800 | 1.11 | 31.20 | 28.11 | 54.3 | ||
| Sys5 (3.56%CP + 2.00%THF) | PW | 4.71 | 3.87 | 57000 | 1.11 | 28.85 | 25.97 | 50.6 |
| 4.73 | 3.84 | 58200 | 1.11 | 29.30 | 26.40 | 48.1 | ||
| 4.69 | 3.90 | 55800 | 1.11 | 28.40 | 25.59 | 47.3 | ||
| Sys6 (2.00%CP + 3.56%THF) | SW | 4.73 | 4.35 | 52800 | 1.11 | 4.61 | 4.15 | 8.73 |
| 4.71 | 4.32 | 54000 | 1.11 | 4.80 | 4.32 | 8.89 | ||
| 4.75 | 4.38 | 51200 | 1.11 | 4.45 | 4.01 | 7.82 | ||
| Sys7 (2.56%CP + 3.00%THF) | SW | 4.78 | 4.40 | 60565 | 1.11 | 5.41 | 4.87 | 8.44 |
| 4.79 | 4.38 | 62000 | 1.11 | 5.30 | 4.77 | 7.69 | ||
| 4.77 | 4.42 | 59000 | 1.11 | 5.55 | 5.00 | 8.47 | ||
| Sys8 (2.78%CP + 2.78%THF) | SW | 4.70 | 3.87 | 78640 | 1.11 | 23.14 | 20.83 | 29.40 |
| 4.72 | 3.85 | 80000 | 1.11 | 23.90 | 21.53 | 27.50 | ||
| 4.68 | 3.90 | 77000 | 1.11 | 22.80 | 20.54 | 26.70 | ||
| Sys9 (3.00%CP + 2.56%THF) | SW | 4.73 | 4.05 | 59500 | 1.11 | 22.54 | 20.30 | 37.9 |
| 4.75 | 4.02 | 60000 | 1.11 | 23.00 | 21.00 | 34.5 | ||
| 4.71 | 4.08 | 60200 | 1.11 | 22.10 | 20.70 | 34.3 | ||
| Sys10 (3.56%CP + 2.00%THF) | SW | 4.80 | 4.12 | 50080 | 1.11 | 22.69 | 20.43 | 45.3 |
| 4.82 | 4.10 | 51000 | 1.11 | 23.10 | 20.81 | 41.7 | ||
| 4.78 | 4.14 | 49500 | 1.11 | 22.30 | 20.09 | 40.6 | ||
| Yan, et al.[ | PW | 3.80 | 2.20 | 21600 | 9.45 | 260.63 | 27.58 | 142.0 |
| Li, et al.[ | PW | 3.60 | 2.51 | 108000 | 13.11 | 250.00 | 19.06 | 17.64 |
| Khandelwal, et al.[ | SW | 3.40 | 2.37 | 14400 | 2.00 | 37.44 | 18.72 | 139.93 |
| Hydrates | Liquid | Time (when the hydrate particles start to disperse) | Time (when the hydrate particles disperse completely) |
|---|---|---|---|
| Sys3 | pure water | T1 (15.6 h) | T2 (24.0 h) |
| Sys8 | pure water | T3 (12.4 h) | T4 (20.0 h) |
| Sys3 | saltwater | T5 (4.5 h) | T6 (6.5 h) |
| Sys8 | saltwater | T7 (3.5 h) | T8 (6.0 h) |
Table 3 Stability test outcomes of CO2 hydrates in pure water and saltwater
| Hydrates | Liquid | Time (when the hydrate particles start to disperse) | Time (when the hydrate particles disperse completely) |
|---|---|---|---|
| Sys3 | pure water | T1 (15.6 h) | T2 (24.0 h) |
| Sys8 | pure water | T3 (12.4 h) | T4 (20.0 h) |
| Sys3 | saltwater | T5 (4.5 h) | T6 (6.5 h) |
| Sys8 | saltwater | T7 (3.5 h) | T8 (6.0 h) |
| [1] | Amstrup S C, Deweaver E T, Douglas D C, et al. Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence[J]. Nature, 2010, 468(7326): 955-958. |
| [2] | Ajayi T, Gomes J S, Bera A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches[J]. Petroleum Science, 2019, 16(5): 1028-1063. |
| [3] | Stainforth D A, Aina T, Christensen C, et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases[J]. Nature, 2005, 433: 403-406. |
| [4] | Siegel D A, DeVries T, Doney S C, et al. Assessing the sequestration time scales of some ocean-based carbon dioxide reduction strategies[J]. Environmental Research Letters, 2021, 16(10): 104003. |
| [5] | Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059): 681-686. |
| [6] | Ricke K L, Orr J C, Schneider K, et al. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections[J]. Environmental Research Letters, 2013, 8(3): 034003. |
| [7] | Teng Y, Zhang D. Long-term viability of carbon sequestration in deep-sea sediments[J]. Sci. Adv., 2018, 4(7): eaao6588. |
| [8] | Cao X W, Wang H C, Yang K R, et al. Hydrate-based CO2 sequestration technology: feasibilities, mechanisms, influencing factors, and applications[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111121. |
| [9] | Kumar Y, Sangwai J S. A perspective on the effect of physicochemical parameters, macroscopic environment, additives, and economics to harness the large-scale hydrate-based CO2 sequestration potential in oceans[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(30): 10950-10979. |
| [10] | Zulqarnain, Mohd Yusoff M H, Keong L K, et al. Recent development of integrating CO2 hydrogenation into methanol with ocean thermal energy conversion (OTEC) as potential source of green energy[J]. Green Chemistry Letters and Reviews, 2023, 16(1): 2152740. |
| [11] | Yang M J, Shan X Y, Sun H R, et al. Review of thermodynamic and kinetic properties of CO2 hydrate phase transition process[J]. Chemical Engineering Science, 2025, 308: 121383. |
| [12] | Gholinezhad J, Chapoy A, Tohidi B. Separation and capture of carbon dioxide from CO2/H2 syngas mixture using semi-clathrate hydrates[J]. Chemical Engineering Research and Design, 2011, 89(9): 1747-1751. |
| [13] | Hayama H, Mitarai M, Mori H, et al. Surfactant effects on crystal growth dynamics and crystal morphology of methane hydrate formed at gas/liquid interface[J]. Crystal Growth & Design, 2016, 16(10): 6084-6088. |
| [14] | Hazas M, Hopper A. Broadband ultrasonic location systems for improved indoor positioning[J]. IEEE Transactions on Mobile Computing, 2006, 5(5): 536-547. |
| [15] | Liu N, Huang J L, Meng F, et al. Experimental study on the mechanism of enhanced CO2 hydrate generation by thermodynamic promoters[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(14): 5367-5375. |
| [16] | Nesterov A N, Reshetnikov A M. New combination of thermodynamic and kinetic promoters to enhance carbon dioxide hydrate formation under static conditions[J]. Chemical Engineering Journal, 2019, 378: 122165. |
| [17] | Przybyla R J, Shelton S E, Guedes A, et al. In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer[J]. IEEE Sensors Journal, 2011, 11(11): 2690-2697. |
| [18] | Saad M M, Bleakley C J, Ballal T, et al. High-accuracy reference-free ultrasonic location estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(6): 1561-1570. |
| [19] | Adisasmito S, R J Ⅲ Frank, Sloan E D. Hydrates of carbon dioxide and methane mixtures[J]. Journal of Chemical & Engineering Data, 1991, 36(1): 68-71. |
| [20] | Sagidullin A K, Skiba S S, Adamova T P, et al. Investigation of the formation processes of CO2 hydrate films on the interface of liquid carbon dioxide with humic acids solutions[J]. Chinese Journal of Chemical Engineering, 2025, 79: 53-61. |
| [21] | Sandru F D, Ungureanu V I, Silea I. Ultrasonic and VCSEL sensor fusion for distance measurement in parking assistance[C]//2023 24th International Conference on Control Systems and Computer Science (CSCS). Bucharest, Romania: IEEE, 2023: 35-40. |
| [22] | Di Profio P, Arca S, Germani R, et al. Surfactant promoting effects on clathrate hydrate formation: Are micelles really involved?[J]. Chemical Engineering Science, 2005, 60(15): 4141-4145. |
| [23] | Watanabe K, Imai S, Mori Y H. Surfactant effects on hydrate formation in an unstirred gas/liquid system: an experimental study using HFC-32 and sodium dodecyl sulfate[J]. Chemical Engineering Science, 2005, 60(17): 4846-4857. |
| [24] | Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions[J]. Applied Physics Letters, 2001, 79(14): 2252-2254. |
| [25] | Reddy M C S, Rao V V. Experimental studies on thermal conductivity of blends of ethylene glycol-water-based TiO2 nanofluids[J]. International Communications in Heat and Mass Transfer, 2013, 46: 31-36. |
| [26] | Xu C G, Yu Y S, Ding Y L, et al. The effect of hydrate promoters on gas uptake[J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21769-21776. |
| [27] | Mok J, Choi W, Kim S, et al. NaCl-induced enhancement of thermodynamic and kinetic CO2 selectivity in CO2 + N2 hydrate formation and its significance for CO2 sequestration[J]. Chemical Engineering Journal, 2023, 451: 138633. |
| [28] | Lee W, Kang D W, Ahn Y H, et al. Blended hydrate seed and liquid promoter for the acceleration of hydrogen hydrate formation[J]. Renewable and Sustainable Energy Reviews, 2023, 177: 113217. |
| [29] | John E, Matschei T, Stephan D. Nucleation seeding with calcium silicate hydrate—a review[J]. Cement and Concrete Research, 2018, 113: 74-85. |
| [30] | Kashchiev D, Firoozabadi A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3/4): 499-515. |
| [31] | Khandelwal H, Qureshi M F, Zheng J J, et al. Effect of L-tryptophan in promoting the kinetics of carbon dioxide hydrate formation[J]. Energy & Fuels, 2021, 35(1): 649-658. |
| [32] | Baek S, Lee W, Min J, et al. Hydrate seeding effect on the metastability of CH4 hydrate[J]. Korean Journal of Chemical Engineering, 2020, 37(2): 341-349. |
| [33] | Huang Z Y, Xu C G, Li X S, et al. Investigation of the influence mechanism of CO2 hydrate formation in seawater systems in the presence of solid promoters by combining in situ Raman analysis with macroscopic experiments[J]. Energy & Fuels, 2024, 38(8): 7137-7147. |
| [34] | Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637. |
| [35] | Linga P, Kumar R, Englezos P. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of Hazardous Materials, 2007, 149(3): 625-629. |
| [36] | Yan S, Dai W J, Wang S L, et al. Graphene oxide: an effective promoter for CO2 hydrate formation[J]. Energies, 2018, 11(7): 1756. |
| [37] | Li Y, Gambelli A M, Rossi F. Experimental study on the effect of SDS and micron copper particles mixture on carbon dioxide hydrates formation[J]. Energies, 2022, 15(18): 6540. |
| [38] | Lo C, Zhang J S, Somasundaran P, et al. Raman spectroscopic studies of surfactant effect on the water structure around hydrate guest molecules[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2676-2679. |
| [1] | Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation [J]. CIESC Journal, 2025, 76(S1): 133-139. |
| [2] | Yuhong TIAN, Zhuangzhuang DU, Huifang XU, Ziqiang ZHU, Yucong WANG. Preparation of ZIF-8 based porous liquid and its SO2 adsorption performance [J]. CIESC Journal, 2025, 76(8): 4284-4296. |
| [3] | Pengguo XU, Ziheng MENG, Ganyu ZHU, Huiquan LI, Chenye WANG, Zhenhua SUN, Guocai TIAN. Study on deep carbonization process and kinetics of crude lithium carbonate with CO2 microbubbles [J]. CIESC Journal, 2025, 76(7): 3325-3338. |
| [4] | Chenru ZHOU, Chenwei LIU, Zhiyuan WANG, Minhui QI, Sanbao DONG, Xiangyu WANG, Mingzhong LI. Effect of methanol and ethylene glycol on adhesion strength of methane hydrates [J]. CIESC Journal, 2025, 76(7): 3596-3604. |
| [5] | Liang QIAO, Shang LI, Xinliang LIU, Ming WANG, Pei ZHANG, Yingfei HOU. Synthesis and molecular simulation of terpolymer viscosity reducer for heavy oil [J]. CIESC Journal, 2025, 76(7): 3686-3695. |
| [6] | Jun HE, Yong LI, Nan ZHAO, Xiaojun HE. Study on the properties of carbon with Se doping cobalt sulfide in lithium-sulfur batteries [J]. CIESC Journal, 2025, 76(6): 2995-3008. |
| [7] | Lingban WANG, Yifei SUN, Yuhao BU, Zhenbin XU, Xian SUN, Hanfeng SHAO, Changyu SUN, Guangjin CHEN. Study on the methane hydrates exploitation by depressurization in a large-scale fan column-shaped reactor [J]. CIESC Journal, 2025, 76(6): 2958-2973. |
| [8] | Zhaoming MAI, Yingtao WU, Wei WANG, Haibao MU, Zuohua HUANG, Chenglong TANG. Study on nonlinear ignition characteristics and dilution gas effect of n-dodecane methane dual fuel [J]. CIESC Journal, 2025, 76(6): 3115-3124. |
| [9] | Chenghui YAN, Yingming XIE, Zhihai PANG, Shengqiao WENG. Study on strengthening of cold storage of R134a hydrate by foamed porous materials [J]. CIESC Journal, 2025, 76(6): 3084-3092. |
| [10] | Qingping ZHAO, Min ZHANG, Hui ZHAO, Gang WANG, Yongfu QIU. Hydrogen bond effect and kinetic studies on hydroesterification of ethylene to methyl propionate [J]. CIESC Journal, 2025, 76(6): 2701-2713. |
| [11] | Zhongzhou ZHANG, Yifei LI, Shuang CHEN, Junfeng QIANG, Yuhong LIU. Properties of epoxy polyhedral oligosiloxanes decorative biphenyl phenolics modified novolac resin [J]. CIESC Journal, 2025, 76(4): 1809-1819. |
| [12] | Junde ZHAO, Aiguo ZHOU, Yanlin CHEN, Jiale ZHENG, Tianshu GE. Current status of energy consumption of adsorption CO2 direct air capture [J]. CIESC Journal, 2025, 76(4): 1375-1390. |
| [13] | Yuanhua LI, Siqi LING, Kejun FENG, Ying FENG, Yuching KUO, Shihhuan HSIEH. Construction and catalytic application of immobilized lipase microreactors based on cMOFs for the synthesis of mandelic acid [J]. CIESC Journal, 2025, 76(3): 1170-1179. |
| [14] | Shen YAN, Yue XI, Shengyu ZHANG, Xiaodong CHEN, Duo WU. Determination of intracrystalline diffusivity for organic vapors in ZSM-5 using the IGC-ZLC method [J]. CIESC Journal, 2025, 76(3): 1076-1083. |
| [15] | Meng YANG, Xiaoqian DING, Tao YU, Chang LIU, Chenglong TANG, Zuohua HUANG. Experimental and kinetic studies for the ignition characteristic of the green propellant of methane/nitrous oxide [J]. CIESC Journal, 2025, 76(3): 1221-1229. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||