CIESC Journal ›› 2025, Vol. 76 ›› Issue (7): 3316-3324.DOI: 10.11949/0438-1157.20241476
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Chenrui MA1,2(
), Xiang WANG1(
), Minhang SONG1,3, Jun JING4, Qiong WU4, Yun HUANG1,2(
)
Received:2024-12-19
Revised:2025-04-14
Online:2025-08-13
Published:2025-07-25
Contact:
Xiang WANG, Yun HUANG
马谌睿1,2(
), 王翔1(
), 宋民航1,3, 敬军4, 吴琼4, 黄云1,2(
)
通讯作者:
王翔,黄云
作者简介:马谌睿(2001—),男,硕士研究生,machenrui23@ipe.ac.cn
基金资助:CLC Number:
Chenrui MA, Xiang WANG, Minhang SONG, Jun JING, Qiong WU, Yun HUANG. Theoretical research on collision behavior and production evolution of titania particles in an industrial oxidation reactor of chlorination process[J]. CIESC Journal, 2025, 76(7): 3316-3324.
马谌睿, 王翔, 宋民航, 敬军, 吴琼, 黄云. 氯化法钛白氧化反应器内颗粒碰撞行为及生成演化过程理论分析[J]. 化工学报, 2025, 76(7): 3316-3324.
Add to citation manager EndNote|Ris|BibTeX
| [1] | Chen X B, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications[J]. Chemical Reviews, 2007, 107(7): 2891-2959. |
| [2] | 陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006: 3-6. |
| Chen Z H, Liu C H. Production and Application Technology of Titanium Dioxide[M]. Beijing: Chemical Industry Press, 2006: 3-6. | |
| [3] | 黄俊, 李荣兴, 田林, 等. 氯化法钛白生产工艺中四氯化钛氧化微观反应机理研究进展[J]. 化工进展, 2018, 37(3): 1054-1061. |
| Huang J, Li R X, Tian L, et al. Research progress of oxidation mechanism in the chloride process for titanium dioxide production[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1054-1061. | |
| [4] | 刘飞生, 谢刚, 于站良, 等. 氯化法生产钛白工艺的研究进展[J]. 材料导报, 2014, 28(15): 113-118. |
| Liu F S, Xie G, Yu Z L, et al. Research and development of titania powders by chlorination technology[J]. Materials Review, 2014, 28(15): 113-118. | |
| [5] | Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems[J]. Chemical Reviews, 1995, 95(1): 49-68. |
| [6] | 李园园, 贾志杰. 纳米金红石型TiO2的制备研究[J]. 化工进展, 2005, 24(10): 1155-1157. |
| Li Y Y, Jia Z J. Preparation and characterization of nanocrystalline rutile TiO2 [J]. Chemical Industry and Engineering Progress, 2005, 24(10): 1155-1157. | |
| [7] | 毛倩. 燃烧中纳米颗粒物生成机理的分子动力学研究[D]. 北京: 清华大学, 2018. |
| Mao Q. Atomistic insights into mechanisms of formation of nanoparticles in flame[D]. Beijing: Tsinghua University, 2018. | |
| [8] | Roth P. Particle synthesis in flames[J]. Proceedings of the Combustion Institute, 2007, 31(2): 1773-1788. |
| [9] | Strobel R, Pratsinis S E. Flame aerosol synthesis of smart nanostructured materials[J]. Journal of Materials Chemistry, 2007, 17(45): 4743-4756. |
| [10] | Waser O, Büchel R, Hintennach A, et al. Continuous flame aerosol synthesis of carbon-coated nano-LiFePO4 for Li-ion batteries[J]. Journal of Aerosol Science, 2011, 42(10): 657-667. |
| [11] | 宗毅晨, 宋佩东, 刘晨阳, 等. 火焰合成中前驱物-颗粒演化过程的时间尺度研究[J]. 工程热物理学报, 2016, 37(10): 2248-2252. |
| Zong Y C, Song P D, Liu C Y, et al. Time scale analysis on precursor-particle transformation in flame aerosol synthesis[J]. Journal of Engineering Thermophysics, 2016, 37(10): 2248-2252. | |
| [12] | 卫吉丽. 火焰合成纳米氧化物颗粒材料的过程调控与机理研究[D]. 北京: 清华大学, 2021. |
| Wei J L. Process control and mechanism study of flame synthesis of metal-oxide nanoparticles[D]. Beijing: Tsinghua University, 2021. | |
| [13] | 陈柄岐. 纳米颗粒气相制备过程中凝并、烧结行为的数值模拟研究[D]. 南京: 东南大学, 2023. |
| Chen B Q. Numerical study on coagulation and sintering of nanoparticle evolution during aerosol synthesis[D]. Nanjing: Southeast University, 2023. | |
| [14] | Nakaso K, Okuyama K, Shimada M, et al. Effect of reaction temperature on CVD-made TiO2 primary particle diameter[J]. Chemical Engineering Science, 2003, 58(15): 3327-3335. |
| [15] | Sung Y, Raman V, Fox R O. Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry[J]. Chemical Engineering Science, 2011, 66(19): 4370-4381. |
| [16] | Boje A, Akroyd J, Sutcliffe S, et al. Detailed population balance modelling of TiO2 synthesis in an industrial reactor[J]. Chemical Engineering Science, 2017, 164: 219-231. |
| [17] | Wang H. Formation of nascent soot and other condensed-phase materials in flames[J]. Proceedings of the Combustion Institute, 2011, 33(1): 41-67 |
| [18] | 张易阳. 基于滞止火焰合成的高温场纳米颗粒动力学研究[D]. 北京: 清华大学, 2013. |
| Zhang Y Y. Dynamics of nanoparticles in stagnation flames[D]. Beijing: Tsinghua University, 2013. | |
| [19] | Bockhorn H, Danna A, Sarofim A F, et al. Combustion Generated Flame Carbonaceous Particles[M]. Villa Orlandi, Anacapri: Karlsruhe University Press, 2007. |
| [20] | 周峨, 王志, 温建康, 等. TiCl4高温气相氧化过程的动力学研究[J]. 稀有金属, 2007, 31(5): 656-660. |
| Zhou E, Wang Z, Wen J K, et al. Oxidation kinetics of titanium tetrachloride in vapor phase[J]. Chinese Journal of Rare Metals, 2007, 31(5): 656-660. | |
| [21] | Pratsinis S E. Flame aerosol synthesis of ceramic powders[J]. Progress in Energy and Combustion Science, 1998, 24(3): 197-219. |
| [22] | 杨绪壮, 袁章福, 王志, 等. 氯化法钛白氧化反应器的设计技术[J]. 化工设计, 2004, 14(1): 5-10. |
| Yang X Z, Yuan Z F, Wang Z, et al. Design and enlargement of oxidation reactor for the production of titania with chlorination method[J]. Chemical Engineering Design, 2004, 14(1): 5-10. | |
| [23] | Buddhiraju V S, Runkana V. Simulation of nanoparticle synthesis in an aerosol flame reactor using a coupled flame dynamics-monodisperse population balance model[J]. Journal of Aerosol Science, 2012, 43(1): 1-13. |
| [24] | Fokin V M, Zanotto E D. Surface and volume nucleation and growth in TiO2-cordierite glasses[J]. Journal of Non-Crystalline Solids, 1999, 246(1/2): 115-127. |
| [25] | Smith R D, Bennett R A, Bowker M. Measurement of the surface-growth kinetics of reduced TiO2(110) during reoxidation using time-resolved scanning tunneling microscopy[J]. Physical Review B, 2002, 66(3): 035409. |
| [26] | Akroyd J, Smith A J, Shirley R, et al. A coupled CFD-population balance approach for nanoparticle synthesis in turbulent reacting flows[J]. Chemical Engineering Science, 2011, 66(17): 3792-3805. |
| [27] | Buesser B, Gröhn A J, Pratsinis S E. Sintering rate and mechanism of TiO2 nanoparticles by molecular dynamics[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2011, 115(22): 11030-11035. |
| [28] | Eggersdorfer M L, Pratsinis S E. Restructuring of aggregates and their primary particle size distribution during sintering[J]. AIChE Journal, 2013, 59(4): 1118-1126. |
| [29] | Buesser B, Pratsinis S E. Design of nanomaterial synthesis by aerosol processes[J]. Annual Review of Chemical and Biomolecular Engineering, 2012, 3: 103-127. |
| [30] | Eggersdorfer M L, Pratsinis S E. The structure of agglomerates consisting of polydisperse particles[J]. Aerosol Science and Technology, 2012, 46(3): 347-353. |
| [31] | Kelesidis G A, Goudeli E, Pratsinis S E. Flame synthesis of functional nanostructured materials and devices: surface growth and aggregation[J]. Proceedings of the Combustion Institute, 2017, 36(1): 29-50. |
| [32] | Ren Y H, Zhang Y Y, Li S Q, et al. Doping mechanism of vanadia/titania nanoparticles in flame synthesis by a novel optical spectroscopy technique[J]. Proceedings of the Combustion Institute, 2015, 35(2): 2283-2289. |
| [33] | Eggersdorfer M L, Goudeli E. Structure and dynamics of fractal-like particles made by agglomeration and sintering [J]. AIChE Journal, 2020, 66(12): e17099. |
| [34] | Ranjan P, Selvam E, Jayaganthan R, et al. Thermodynamic modelling and characterisation of TiO2 nanoparticles produced by wire explosion process[J]. Materials Today: Proceedings, 2018, 5(9): 17304-17311. |
| [35] | Tsantilis S, Pratsinis S E. Soft- and hard-agglomerate aerosols made at high temperatures[J]. Langmuir, 2004, 20(14): 5933-5939. |
| [36] | Einar, Kusters, Pratsinis S E, et al. A simple model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering[J]. Aerosol Science and Technology, 1993, 19(4): 514-526. |
| [37] | Heine M C, Pratsinis S E. Agglomerate TiO2 aerosol dynamics at high concentrations[J]. Particle & Particle Systems Characterization, 2007, 24(1): 56-65. |
| [38] | Kobata A, Kusakabe K, Morooka S. Growth and transformation of TiO2 crystallites in aerosol reactor[J]. AIChE Journal, 1991, 37(3): 347-359. |
| [39] | Seto T, Shimada M, Okuyama K. Evaluation of sintering of nanometer-sized titania using aerosol method[J]. Aerosol Science and Technology, 1995, 23(2): 183-200. |
| [1] | Wei LIN, Jian DU, Chen YAO, Jiahao ZHU, Wei WANG, Xiaotao ZHENG, Jianmin XU, Jiuyang YU. Study on ion transport and nucleation mechanism in electrochemical water softening process [J]. CIESC Journal, 2025, 76(4): 1788-1799. |
| [2] | Runjian LIU, Gang LIN, Ling ZHANG, Dong XU, Ming LI, Luchang HAN. A coupling model of the approaching-thinning process with the effect of bubble surface deformation [J]. CIESC Journal, 2025, 76(4): 1504-1512. |
| [3] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
| [4] | Zhengliang HUANG, Mingrui FENG, Qi SONG, Congjing REN, Yao YANG, Jingyuan SUN, Jingdai WANG, Yongrong YANG. Inhibitory effect of premixed feedstock on particle agglomeration in fluidized pyrolysis reaction of waste resin [J]. CIESC Journal, 2024, 75(9): 3094-3102. |
| [5] | Mingjun YANG, Wei SONG, Lei ZHANG, Zheng LING, Bingbing CHEN, Yongchen SONG. Research on the enhanced method of CO2-seawater hydrate generation [J]. CIESC Journal, 2024, 75(8): 2939-2948. |
| [6] | Mingqing TAO, Minghao MU, Teng CHENG, Bo WANG. Research on spray coupled cooling to enhance the removal of fine particles by cyclone separator [J]. CIESC Journal, 2024, 75(2): 584-592. |
| [7] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
| [8] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
| [9] | Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier [J]. CIESC Journal, 2023, 74(4): 1528-1538. |
| [10] | Hao ZHANG, Huibin XU, Jian GAO, Dihong LIU, Zehua ZHOU. Geldart-D wet particle tilt-fall behavior and its reinforcement [J]. CIESC Journal, 2023, 74(4): 1519-1527. |
| [11] | Airan ZHOU, Ping LU, Jianhui XIA, Dongqin LI, Jie GUO, Ming DU, Lichun DONG. Scarring analysis and numerical simulation of TiCl4 oxidation reactor in chloride process of titanium dioxide [J]. CIESC Journal, 2023, 74(4): 1499-1508. |
| [12] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
| [13] | Jian XU, Donghui ZHANG, Jun HUANG, Lei FENG, Fengyuan YANG, Xiang GAO. Effect of structural parameters on flow boiling performance of sintered microchannels [J]. CIESC Journal, 2023, 74(11): 4548-4558. |
| [14] | Daoyin LIU, Zhiheng FAN, Jiliang MA, Xiaoping CHEN. Direct numerical simulation of restitution coefficient during oblique collision of wet particles [J]. CIESC Journal, 2023, 74(10): 4063-4073. |
| [15] | Wei ZHANG, Haoyang LI, Chungang XU, Xiaosen LI. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation [J]. CIESC Journal, 2022, 73(9): 3815-3827. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||