化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3328-3337.doi: 10.11949/0438-1157.20201543

• 能源和环境工程 • 上一篇    下一篇

六水硝酸镁相变储热复合材料改性制备及储/放热性能研究

高剑晨(),赵炳晨,何峰,李廷贤()   

  1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 收稿日期:2020-11-01 修回日期:2021-01-04 出版日期:2021-06-05 发布日期:2021-06-05
  • 通讯作者: 李廷贤 E-mail:gank_machine@sjtu.edu.cn;litx@sjtu.edu.cn
  • 作者简介:高剑晨(1997—),男,硕士研究生,gank_machine@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876117);国家重点研发计划项目(2018YFE0100300)

Preparation and investigation of the thermal charging and discharging of modified magnesium nitrate hexahydrate composite phase change material

GAO Jianchen(),ZHAO Bingchen,HE Feng,LI Tingxian()   

  1. Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2020-11-01 Revised:2021-01-04 Published:2021-06-05 Online:2021-06-05
  • Contact: LI Tingxian E-mail:gank_machine@sjtu.edu.cn;litx@sjtu.edu.cn

摘要:

水合盐相变材料因具有较高的相变焓和较低的成本在中低温储热领域有着广泛的应用前景,但其在储放热过程中通常存在过冷度大和热循环稳定性差的问题。以六水硝酸镁为主要研究对象开展相变储热复合材料的改性制备及相变储热装置的研制,采用熔融共混法制备了以二水硫酸钙为成核剂的六水硝酸镁相变储热复合材料,利用差示扫描量热仪及步冷曲线法测试了相变储热复合材料的热物性和循环热稳定性。在此基础上设计并构建了储热量为152 kWh的相变储热装置和相变储热系统,并对其储/放热性能进行了测试。结果表明:添加了2%(质量)二水硫酸钙的相变储热复合材料具有较好的循环热稳定性,且在经过50次熔化-凝固循环后其过冷度一直保持在0.5℃内,相变温度保持在87℃左右,相变焓保持在150 kJ/kg以上;相变储热装置可实现高达27 kW的平均储热功率,在保证放热过程中出水温度不低于56℃的情况下,可实现8 kW的平均放热功率和92.3%的储-放热效率,可满足建筑采暖及日常生活热水需求。

关键词: 无机盐, 六水硝酸镁, 储热, 热稳定性

Abstract:

The hydrated salt phase change material has a wide range of application prospects in the field of medium and low temperature heat storage due to its high phase change enthalpy and low cost, but it usually has the problems of large subcooling and poor thermal cycle stability in the process of heat storage and release. Here, a modified magnesium nitrate hexahydrate is prepared as composite phase change material (PCM) for thermal energy storage, and the high-performance heat storage device using the modified PCM is designed and fabricated. The magnesium nitrate hexahydrate is modified by using calcium sulfate dihydrate as nucleating agent to synthesize composite PCM. The thermal properties and cycle thermal stability of the composite PCM are tested by differential scanning calorimeter (DSC) and thermal analysis method. Moreover, the composite PCM-based heat storage device and heating system with storage capacity of 152 kWh are designed and constructed, and their thermal performances are tested at different working conditions. The results show that the composite PCM with 2%(mass). Calcium sulfate dihydrate has good cycle thermal stability, and its supercooling degree can be kept within 0.5℃ after 50 melting-solidification cycles. The phase-change temperature is about 87℃ and the phase-change enthalpy is maintained above 150 kJ/kg. The PCM-based heat storage device achieves an average charging power up to 27 kW and discharging power of 8 kW. The thermal efficiency of heat storage-release is as high as 92.3%, and the heat storage device can ensure the outlet water temperature is higher than 56℃ during the heat release process, and thus can meet building heating and hot water.

Key words: hydrated salt, magnesium nitrate hexahydrate, heat storage, thermal stability

中图分类号: 

  • TK 124

表1

六水硝酸镁和二水硫酸钙的晶格参数"

材料a/?b/?c/?α/(°)β/(°)γ/(°)晶系
Mg(NO3)2·6H2O6.1912.6146.569093.7290单斜
CaSO4·2H2O5.6715.2016.53390118.690单斜

图1

六水硝酸镁相变储热复合材料制备过程"

表2

六水硝酸镁相变储热复合材料的组分质量配比"

材料样品1样品2样品3样品4
Mg(NO3)2·6H2O100%99%98%97%
CaSO4·2H2O0%1%2%3%

图2

步冷曲线测试系统示意图"

图3

相变储热器外观及结构示意图"

图4

相变储热采暖系统示意图"

图5

不同CSD含量的MNH相变储热复合材料在循环50次前、后的DSC曲线"

图6

不同CSD含量的六水硝酸镁相变储热复合材料的步冷曲线"

图7

成核剂含量不同的六水硝酸镁相变储热复合材料的热稳定性"

图8

添加2%CSD的MNH相变储热复合材料的热物性"

图9

储热模式下储热器温度、功率和水流量随时间变化情况"

图10

放热模式下储热器温度、功率和水流量随时间变化情况"

1 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592.
Wu Y T, Ren N, Ma C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592.
2 Zhang D L, Liu L M, Liu M H, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848.
3 Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806.
4 Prieto C, Cooper P, Fernández A I, et al. Review of technology: thermochemical energy storage for concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 909-929.
5 Chen X Y, Zhang Z, Qi C G, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815.
6 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245.
Wu J, Long X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245.
7 Shao J J, Darkwa J, Kokogiannakis G. Review of phase change emulsions (PCMEs) and their applications in HVAC systems[J]. Energy and Buildings, 2015, 94: 200-217.
8 Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change material thermal energy storage medium: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2119-2125.
9 Sharma R K, Ganesan P, Tyagi V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228.
10 Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259.
11 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632.
Meng L R, Guo L J, Li X Y, et al. Salt hydrate based phase change materials for thermal energy storage—a review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632.
12 Lin Y X, Alva G, Fang G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708.
13 Donkers P A J, Sögütoglu L C, Huinink H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68.
14 Wang Q, Wang J T, Chen Y Y, et al. Experimental investigation of barium hydroxide octahydrate as latent heat storage materials[J]. Solar Energy, 2019, 177: 99-107.
15 Fernandes D, Pitié F, Cáceres G, et al. Thermal energy storage: "How previous findings determine current research priorities"[J]. Energy, 2012, 39(1): 246-257.
16 Wang H, Guo L, Liu K, et al. Investigation of magnesium nitrate hexahydrate based phase change materials containing nanoparticles for thermal energy storage[J]. Materials Research Express, 2019, 6(10): 105512.
17 Nagano K, Ogawa K, Mochida T, et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat[J]. Applied Thermal Engineering, 2004, 24(2/3): 221-232.
18 Rajamani P, Balasubramaniam M, Radhakrishnan K. Calorimetric investigation of magnesium nitrate hexahydrate and sodium thiosulphate pentahydrate as salt mixture encapsulated materials for thermal energy storage[J]. Thermal Science, 2020, 24(1 Part B): 613-621.
19 Rao Z H, Zhang G T, Xu T T, et al. Experimental study on a novel form-stable phase change materials based on diatomite for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 182: 52-60.
20 Salunkhe P B, D J K. Investigations on latent heat storage materials for solar water and space heating applications[J]. Journal of Energy Storage, 2017, 12: 243-260.
21 Lane G A. Phase change materials for energy storage nucleation to prevent supercooling[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 135-160.
22 Ding Q, Luo X G, Lin X Y, et al. Study of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as phase change material[C]//2012 Asia-Pacific Power and Energy Engineering Conference. Shanghai, 2012: 1-4.
23 谷海明. 相变储能材料Mg(NO3)2·6H2O的稳定与储热性能研究[D]. 昆明: 昆明理工大学, 2013.
Gu H M. Study on the stability and heat storage performance of phase change energy storage material Mg(NO3)2·6H2O[D]. Kunming: Kunming University of Science and Technology, 2013.
24 Honcova P, Pilar R, Danielik V, et al. Suppressing supercooling in magnesium nitrate hexahydrate and evaluating corrosion of aluminium alloy container for latent heat storage application[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1573-1581.
25 Danielik V, Šoška P, Felgerová K, et al. The corrosion of carbon steel in nitrate hydrates used as phase change materials[J]. Materials and Corrosion, 2017, 68(4): 416-422.
26 Muthusivagami R M, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage—a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 691-701.
27 Ali H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review[J]. Journal of Energy Storage, 2019, 26: 100986.
28 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868.
Wu D L, Li T X, He F, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69(7): 2860-2868.
29 He Y, Zhang N, Yuan Y P, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(2): 859-867.
30 Liu C Z, Hu P B, Xu Z, et al. Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage[J]. Thermochimica Acta, 2019, 674: 28-35.
31 Naumann R, Emons H H. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials[J]. Journal of Thermal Analysis, 1989, 35(3): 1009-1031.
32 李廷贤, 王如竹, 何峰. 一种复合相变储热材料: 109609098A[P]. 2019.04.12.
Li T X, Wang R Z, He F. Composite phase change heat storage material: 109609098A[P]. 2019.04.12.
[1] 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559.
[2] 魏小兰, 谢佩, 王维龙, 陆建峰, 丁静. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021, 72(6): 3074-3083.
[3] 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668.
[4] 熊亚选, 钱向瑶, 李烁, 孙明远, 王振宇, 吴玉庭, 徐鹏, 丁玉龙, 马重芳. 制备方法对纳米熔盐储热性能及形成机理的影响[J]. 化工学报, 2021, 72(5): 2857-2868.
[5] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[6] 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327.
[7] 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252.
[8] 杨丰瑞, 王志, 燕方正, 韩向磊, 王纪孝. 纳滤用于一价/二价无机盐溶液分离研究进展[J]. 化工学报, 2021, 72(2): 799-813.
[9] 徐祥贵, 王丽琼, 王君雷, 王燕, 黄巧, 黄云. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964.
[10] 郭枭,邱云峰,史志国,王亚辉,宋力,田瑞. 储热型太阳能供暖系统热输送全过程特性研究[J]. 化工学报, 2021, 72(10): 5384-5395.
[11] 刘亮, 吴爱枝, 黄云, 黄剑. 两类复合无机相变储热材料高温热稳定性和安全性研究[J]. 化工学报, 2020, 71(S2): 314-320.
[12] 刘华, 彭佳杰, 余凯, 倪毅, 王芳, 潘权稳, 葛天舒, 王如竹. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361.
[13] 黄睿, 方晓明, 凌子夜, 张正国. 高性能三水醋酸钠-尿素-膨胀石墨混合相变材料的制备及其在电地暖中的应用性能[J]. 化工学报, 2020, 71(6): 2713-2723.
[14] 魏小兰, 谢佩, 张雪钏, 王维龙, 陆建峰, 丁静. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431.
[15] 金晶, 安秋凤, 杨博文, 史书源, 田华鹏. 环氧基POSS改性环氧树脂的研制与性能研究[J]. 化工学报, 2020, 71(5): 2432-2439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张英, 苏宏业, 褚健. 基于支持向量基的关联规则挖掘及其在模拟移动床PX吸附分离过程中的应用[J]. CIESC Journal, 2005, 13(6): 751 -757 .
[2] HUANGLixin,KurichiKumar,A.S.Mujumdar. 干燥室中不同液体的喷雾蒸发对流动、传热、传质性能的影响[J]. CIESC Journal, 2004, 12(6): 737 -743 .
[3] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[4] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[5] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[6] 吉远辉, 吉晓燕, 冯新, 刘畅, 吕玲红, 陆小华. CO2-H2O和CO2-H2O-NaCl 体系的相平衡研究进展[J]. CIESC Journal, 2007, 15(3): 439 -448 .
[7] 曹维良, 王泽, 张敬畅. 影响纳米碳酸钙制备过程的因素分析[J]. CIESC Journal, 2003, 11(5): 589 -593 .
[8] 张秀莉, 张卫东, 郝新敏, 张慧峰, 张泽廷, 张建春. PTFE多孔膜气体渗透数学模型和膜孔结构的影响[J]. CIESC Journal, 2003, 11(4): 383 -387 .
[9] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[10] 王延敏, 姚平经. 利用人工神经网络和遗传算法对热偶精馏过程进行模拟优化[J]. CIESC Journal, 2003, 11(3): 307 -311 .