化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3328-3337.DOI: 10.11949/0438-1157.20201543
收稿日期:
2020-11-01
修回日期:
2021-01-04
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
李廷贤
作者简介:
高剑晨(1997—),男,硕士研究生,基金资助:
GAO Jianchen(),ZHAO Bingchen,HE Feng,LI Tingxian()
Received:
2020-11-01
Revised:
2021-01-04
Online:
2021-06-05
Published:
2021-06-05
Contact:
LI Tingxian
摘要:
水合盐相变材料因具有较高的相变焓和较低的成本在中低温储热领域有着广泛的应用前景,但其在储放热过程中通常存在过冷度大和热循环稳定性差的问题。以六水硝酸镁为主要研究对象开展相变储热复合材料的改性制备及相变储热装置的研制,采用熔融共混法制备了以二水硫酸钙为成核剂的六水硝酸镁相变储热复合材料,利用差示扫描量热仪及步冷曲线法测试了相变储热复合材料的热物性和循环热稳定性。在此基础上设计并构建了储热量为152 kWh的相变储热装置和相变储热系统,并对其储/放热性能进行了测试。结果表明:添加了2%(质量)二水硫酸钙的相变储热复合材料具有较好的循环热稳定性,且在经过50次熔化-凝固循环后其过冷度一直保持在0.5℃内,相变温度保持在87℃左右,相变焓保持在150 kJ/kg以上;相变储热装置可实现高达27 kW的平均储热功率,在保证放热过程中出水温度不低于56℃的情况下,可实现8 kW的平均放热功率和92.3%的储-放热效率,可满足建筑采暖及日常生活热水需求。
中图分类号:
高剑晨, 赵炳晨, 何峰, 李廷贤. 六水硝酸镁相变储热复合材料改性制备及储/放热性能研究[J]. 化工学报, 2021, 72(6): 3328-3337.
GAO Jianchen, ZHAO Bingchen, HE Feng, LI Tingxian. Preparation and investigation of the thermal charging and discharging of modified magnesium nitrate hexahydrate composite phase change material[J]. CIESC Journal, 2021, 72(6): 3328-3337.
材料 | a/? | b/? | c/? | α/(°) | β/(°) | γ/(°) | 晶系 |
---|---|---|---|---|---|---|---|
Mg(NO3)2·6H2O | 6.19 | 12.614 | 6.56 | 90 | 93.72 | 90 | 单斜 |
CaSO4·2H2O | 5.67 | 15.201 | 6.533 | 90 | 118.6 | 90 | 单斜 |
表1 六水硝酸镁和二水硫酸钙的晶格参数
Table 1 Lattice parameters of magnesium nitrate hexahydrate and calcium sulfate dihydrate
材料 | a/? | b/? | c/? | α/(°) | β/(°) | γ/(°) | 晶系 |
---|---|---|---|---|---|---|---|
Mg(NO3)2·6H2O | 6.19 | 12.614 | 6.56 | 90 | 93.72 | 90 | 单斜 |
CaSO4·2H2O | 5.67 | 15.201 | 6.533 | 90 | 118.6 | 90 | 单斜 |
材料 | 样品1 | 样品2 | 样品3 | 样品4 |
---|---|---|---|---|
Mg(NO3)2·6H2O | 100% | 99% | 98% | 97% |
CaSO4·2H2O | 0% | 1% | 2% | 3% |
表2 六水硝酸镁相变储热复合材料的组分质量配比
Table 2 Component mass ratio of magnesium nitrate hexahydrate composite phase change material
材料 | 样品1 | 样品2 | 样品3 | 样品4 |
---|---|---|---|---|
Mg(NO3)2·6H2O | 100% | 99% | 98% | 97% |
CaSO4·2H2O | 0% | 1% | 2% | 3% |
1 | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592. |
Wu Y T, Ren N, Ma C F. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. | |
2 | Zhang D L, Liu L M, Liu M H, et al. Review of conceptual design and fundamental research of molten salt reactors in China[J]. International Journal of Energy Research, 2018, 42(5): 1834-1848. |
3 | Li Q, Li C, Du Z, et al. A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications[J]. Applied Energy, 2019, 255: 113806. |
4 | Prieto C, Cooper P, Fernández A I, et al. Review of technology: thermochemical energy storage for concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 909-929. |
5 | Chen X Y, Zhang Z, Qi C G, et al. State of the art on the high-temperature thermochemical energy storage systems[J]. Energy Conversion and Management, 2018, 177: 792-815. |
6 | 吴娟, 龙新峰. 太阳能热化学储能研究进展[J]. 化工进展, 2014, 33(12): 3238-3245. |
Wu J, Long X F. Research progress of solar thermochemical energy storage[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3238-3245. | |
7 | Shao J J, Darkwa J, Kokogiannakis G. Review of phase change emulsions (PCMEs) and their applications in HVAC systems[J]. Energy and Buildings, 2015, 94: 200-217. |
8 | Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change material thermal energy storage medium: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2119-2125. |
9 | Sharma R K, Ganesan P, Tyagi V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228. |
10 | Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
11 | 孟令然, 郭立江, 李晓禹, 等. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
Meng L R, Guo L J, Li X Y, et al. Salt hydrate based phase change materials for thermal energy storage—a review[J]. Energy Storage Science and Technology, 2017, 6(4): 623-632. | |
12 | Lin Y X, Alva G, Fang G Y. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165: 685-708. |
13 | Donkers P A J, Sögütoglu L C, Huinink H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. |
14 | Wang Q, Wang J T, Chen Y Y, et al. Experimental investigation of barium hydroxide octahydrate as latent heat storage materials[J]. Solar Energy, 2019, 177: 99-107. |
15 | Fernandes D, Pitié F, Cáceres G, et al. Thermal energy storage: "How previous findings determine current research priorities"[J]. Energy, 2012, 39(1): 246-257. |
16 | Wang H, Guo L, Liu K, et al. Investigation of magnesium nitrate hexahydrate based phase change materials containing nanoparticles for thermal energy storage[J]. Materials Research Express, 2019, 6(10): 105512. |
17 | Nagano K, Ogawa K, Mochida T, et al. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat[J]. Applied Thermal Engineering, 2004, 24(2/3): 221-232. |
18 | Rajamani P, Balasubramaniam M, Radhakrishnan K. Calorimetric investigation of magnesium nitrate hexahydrate and sodium thiosulphate pentahydrate as salt mixture encapsulated materials for thermal energy storage[J]. Thermal Science, 2020, 24(1 Part B): 613-621. |
19 | Rao Z H, Zhang G T, Xu T T, et al. Experimental study on a novel form-stable phase change materials based on diatomite for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 182: 52-60. |
20 | Salunkhe P B, D J K. Investigations on latent heat storage materials for solar water and space heating applications[J]. Journal of Energy Storage, 2017, 12: 243-260. |
21 | Lane G A. Phase change materials for energy storage nucleation to prevent supercooling[J]. Solar Energy Materials and Solar Cells, 1992, 27(2): 135-160. |
22 | Ding Q, Luo X G, Lin X Y, et al. Study of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as phase change material[C]//2012 Asia-Pacific Power and Energy Engineering Conference. Shanghai, 2012: 1-4. |
23 | 谷海明. 相变储能材料Mg(NO3)2·6H2O的稳定与储热性能研究[D]. 昆明: 昆明理工大学, 2013. |
Gu H M. Study on the stability and heat storage performance of phase change energy storage material Mg(NO3)2·6H2O[D]. Kunming: Kunming University of Science and Technology, 2013. | |
24 | Honcova P, Pilar R, Danielik V, et al. Suppressing supercooling in magnesium nitrate hexahydrate and evaluating corrosion of aluminium alloy container for latent heat storage application[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1573-1581. |
25 | Danielik V, Šoška P, Felgerová K, et al. The corrosion of carbon steel in nitrate hydrates used as phase change materials[J]. Materials and Corrosion, 2017, 68(4): 416-422. |
26 | Muthusivagami R M, Velraj R, Sethumadhavan R. Solar cookers with and without thermal storage—a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 691-701. |
27 | Ali H M. Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: a recent review[J]. Journal of Energy Storage, 2019, 26: 100986. |
28 | 吴东灵, 李廷贤, 何峰, 等. 三水醋酸钠相变储能复合材料改性制备及储/放热特性[J]. 化工学报, 2018, 69(7): 2860-2868. |
Wu D L, Li T X, He F, et al. Preparation and performance of modified sodium acetate trihydrate composite phase change material for thermal energy storage[J]. CIESC Journal, 2018, 69(7): 2860-2868. | |
29 | He Y, Zhang N, Yuan Y P, et al. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3 as addictive[J]. Journal of Thermal Analysis and Calorimetry, 2018, 133(2): 859-867. |
30 | Liu C Z, Hu P B, Xu Z, et al. Experimental investigation on thermal properties of sodium acetate trihydrate based phase change materials for thermal energy storage[J]. Thermochimica Acta, 2019, 674: 28-35. |
31 | Naumann R, Emons H H. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials[J]. Journal of Thermal Analysis, 1989, 35(3): 1009-1031. |
32 | 李廷贤, 王如竹, 何峰. 一种复合相变储热材料: 109609098A[P]. 2019.04.12. |
Li T X, Wang R Z, He F. Composite phase change heat storage material: 109609098A[P]. 2019.04.12. |
[1] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[2] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[3] | 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261. |
[4] | 宋超宇, 熊亚选, 张金花, 金宇贺, 药晨华, 王辉祥, 丁玉龙. 污泥焚烧炉渣基定型复合相变储热材料的制备和性能[J]. 化工学报, 2022, 73(5): 2279-2287. |
[5] | 陈子禾, 赵呈志, 冒文莉, 盛楠, 朱春宇. 定向生物质多孔碳复合相变材料的制备及其热性能研究[J]. 化工学报, 2022, 73(4): 1817-1825. |
[6] | 孔昕山, 黄仁星, 康丽霞, 刘永忠. 甲醇模块化生产中分时储热系统的优化设计[J]. 化工学报, 2022, 73(2): 770-781. |
[7] | 张欣宇, 杨晓宏, 张燕楠, 徐佳锟, 郭枭, 田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409. |
[8] | 沈永亮, 张朋威, 刘淑丽. 肋片和多孔介质强化梯级相变储热系统性能的对比研究[J]. 化工学报, 2022, 73(10): 4366-4376. |
[9] | 罗伟莉, 王雯雯, 潘权稳, 葛天舒, 王如竹. 基于活性碳纤维毡复合吸附剂的储热性能[J]. 化工学报, 2021, 72(S1): 554-559. |
[10] | 魏小兰, 谢佩, 王维龙, 陆建峰, 丁静. 含钙三元氯化物体系相图计算与熔盐热稳定性[J]. 化工学报, 2021, 72(6): 3074-3083. |
[11] | 熊亚选, 钱向瑶, 李烁, 孙明远, 王振宇, 吴玉庭, 徐鹏, 丁玉龙, 马重芳. 制备方法对纳米熔盐储热性能及形成机理的影响[J]. 化工学报, 2021, 72(5): 2857-2868. |
[12] | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772. |
[13] | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
[14] | 张锐, 邵琦, 张华宇, 金泽龙, 张小亮. 硼掺杂二氧化硅杂化膜的制备及渗透汽化脱盐性能[J]. 化工学报, 2021, 72(4): 2317-2327. |
[15] | 王琴, 徐会金, 韩兴超, 赵长颖. MgO/Mg(OH)2热化学储热反应的第一性原理研究[J]. 化工学报, 2021, 72(3): 1242-1252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||