化工学报 ›› 2022, Vol. 73 ›› Issue (2): 770-781.doi: 10.11949/0438-1157.20211315

• 过程系统工程 • 上一篇    下一篇

甲醇模块化生产中分时储热系统的优化设计

孔昕山1(),黄仁星1,康丽霞1,2,3,刘永忠1,2,3()   

  1. 1.西安交通大学化学工程与技术学院,陕西 西安 710049
    2.新能源系统工程与装备陕西省高校工程研究中心,陕西 西安 710049
    3.陕西省能源化工过程强化重点实验室,陕西 西安 710049
  • 收稿日期:2021-09-08 修回日期:2021-11-17 出版日期:2022-02-05 发布日期:2022-02-18
  • 通讯作者: 刘永忠 E-mail:xskong@stu.xjtu.edu.cn;yzliu@mail.xjtu.edu.cn
  • 作者简介:孔昕山(1998—),男,硕士研究生,xskong@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(21878240)

Optimal design of time-sharing heat storage system for modular production of methanol

Xinshan KONG1(),Renxing HUANG1,Lixia KANG1,2,3,Yongzhong LIU1,2,3()   

  1. 1.School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
    2.Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi’an 710049, Shaanxi, China
    3.Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi’an 710049, Shaanxi, China
  • Received:2021-09-08 Revised:2021-11-17 Published:2022-02-05 Online:2022-02-18
  • Contact: Yongzhong LIU E-mail:xskong@stu.xjtu.edu.cn;yzliu@mail.xjtu.edu.cn

摘要:

以“数量放大”为特征的模块化化工生产为克服原料供给和产品市场需求波动的生产流程优化操作提供新途径。为了提高生产系统的能量利用效率,需对生产系统中随时间变化的流股预热、冷却和反应热分时段进行储存和调度。针对可再生能源驱动的甲醇模块化生产系统,本文提出了分时储热策略,通过储罐设置及流股匹配、储罐储热温区确定和储罐容量配置及调度三步对甲醇模块化生产中分时储热系统进行优化设计,获得了分时储热系统的最优配置和优化调度方案。研究表明:在甲醇模块化生产系统中,分时储热系统可将前阶段的热量储存供后续阶段调用,以实现系统能量的最大化利用,而储热的适量废弃可降低储热系统的投资费用。本文所提出的储热系统优化方法可为波动生产过程中分时储热系统的优化设计提供分析工具。

关键词: 模块化生产, 甲醇, 分时储热系统, 优化设计, 模拟

Abstract:

Modular chemical production characterized by“numbering-up”provides a new way to optimize the production process to overcome fluctuations in raw material supply and product market demand. In order to improve the energy utilization efficiency of the production system, it is necessary to store and schedule the preheating, cooling and reaction heat of the streams that change over time in the production system. For the methanol modular production system driven by renewable energy, a time-sharing heat storage strategy for modular production of methanol was proposed, in which three steps are included, i.e. setting storage tank and matching streams, determining the temperatures of heat storage and configuring the capacities of tanks. The optimal design and scheme of heat storage can be obtained. The results showed that the time-sharing heat storage system can allocate the thermal energy in the previous stage to use in the subsequent stages in the methanol production system, which can maximize the utilization of energy in the system. The appropriate amount of heat storage can reduce the investment of the heat storage system cost. The proposed optimization method for heat storage systems can provide practical tools for analysis of the optimal design of the time-sharing heat storage system in the fluctuating production processes.

Key words: modular production, methanol, time-sharing heat storage, optimal design, simulation

中图分类号: 

  • TQ 021.8

图1

化学品模块化生产的分时储热系统"

图2

储热储罐设置流程"

图3

甲醇模块化生产中单生产模块的简化工艺流程"

图4

一个典型天24 h内生产线数量的调度情况"

图5

一个典型天24 h内生产线换热器热负荷变化情况"

图6

甲醇生产工艺流程的无分流换热网络"

表1

储罐和空冷器的费用计算参数"

Capital cost (Ccap)/USDMaintenance cost (Cmai)/USDMin LF (LFmin)

Max LF

(LFmax)

Lifetime (n)/y

Operating cost(OPHEij)/

(USD/MWh)

STijCcapHEij=37.8QratedSTijCmaiSTij=1%CcapHEij[27]00.85[28]20[29]
HE11CcapHE11=780PratedHE11+2100[30]CmaiHE11=1%CcapHE110110[31]23.06
HE12CcapHE12=780PratedHE12+2100[30]CmaiHE12=1%CcapHE110110[31]23.06
HE13CcapHE13=1280PratedHE13+2100[30]CmaiHE13=1%CcapHE110110[31]23.06
HE14CcapHE15=1710PratedHE13+2100[30]CmaiHE14=1%CcapHE110110[31]23.06

表2

情形S1和情形S2中储罐容量配置"

ScenarioST11/tST12/tST13/tST14/t
S11.12×1041.08×1037.71×1038.68×103
S21.12×1041.33×1027.38×1018.20×101

表3

情形S1和情形S2中空冷器热负荷配置"

ScenarioHE11/MWHE12/MWHE13/MWHE14/MW
S10004.25
S21.240.532.154.25

表4

情形S1和情形S2中设备投资费用与操作费用"

ScenarioTotal cost/USDST cost/USDHE cost/USDOperating cost/USD
S11.15×1051.09×1057.81×1025.37×103
S26.86×1044.79×1041.65×1031.91×104

图7

不同情形下系统费用的对比"

图8

情形S1和情形S2储罐的储能过程特性"

1 Liu Z M, Lim M Q, Kraft M, et al. Simultaneous design and operation optimization of renewable combined cooling heating and power systems[J]. AIChE Journal, 2020, 66(12): e17039.
2 Allman A, Palys M J, Daoutidis P. Scheduling-informed optimal design of systems with time-varying operation: a wind-powered ammonia case study[J]. AIChE Journal, 2019, 65(7): e16434.
3 Varone A, Ferrari M. Power to liquid and power to gas: an option for the German Energiewende[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 207-218.
4 Buttler A, Spliethoff H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454.
5 Rivarolo M, Bellotti D, Magistri L, et al. Feasibility study of methanol production from different renewable sources and thermo-economic analysis[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2105-2116.
6 Yang M B, You F Q. Modular methanol manufacturing from shale gas: techno-economic and environmental analyses of conventional large-scale production versus small-scale distributed, modular processing[J]. AIChE Journal, 2018, 64(2): 495-510.
7 Seifert T, Sievers S, Bramsiepe C, et al. Small scale, modular and continuous: a new approach in plant design[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52: 140-150.
8 Baldea M, Edgar T F, Stanley B L, et al. Modular manufacturing processes: status, challenges, and opportunities[J]. AIChE Journal, 2017, 63(10): 4262-4272.
9 Lier S, Paul S, Ferdinand D, et al. Modular process engineering: development of apparatuses for transformable production systems[J]. ChemBioEng Reviews, 2017, 4(1): 60-70.
10 Arora A, Li J P, Zantye M S, et al. Design standardization of unit operations for reducing the capital intensity and cost of small-scale chemical processes[J]. AIChE Journal, 2020, 66(2): e16802.
11 Chen Q, Grossmann I E. Effective generalized disjunctive programming models for modular process synthesis[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5873-5886.
12 Lier S, Grünewald M. Net present value analysis of modular chemical production plants[J]. Chemical Engineering & Technology, 2011, 34(5): 809-816.
13 Palys M J, Allman A, Daoutidis P. Exploring the benefits of modular renewable-powered ammonia production: a supply chain optimization study[J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5898-5908.
14 Dannemand M, Perers B, Furbo S. Performance of a demonstration solar PVT assisted heat pump system with cold buffer storage and domestic hot water storage tanks[J]. Energy and Buildings, 2019, 188/189: 46-57.
15 施素丽, 鹿院卫, 于强, 等. 熔盐单罐释热过程换热器取热方式优选[J]. 化工学报, 2019, 70(3): 857-864.
Shi S L, Lu Y W, Yu Q, et al. Optimization of heat removal modes for heat exchanger in molten salt single storage tank[J]. CIESC Journal, 2019, 70(3): 857-864.
16 Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage[J]. Sustainability, 2018, 10(1): 191.
17 Farzan H, Zaim E H. Feasibility study on using asphalt pavements as heat absorbers and sensible heat storage materials in solar air heaters: an experimental study[J]. Journal of Energy Storage, 2021, 44: 103383.
18 Kumar A, Saha S K. Performance analysis of a packed bed latent heat thermal energy storage with cylindrical-shaped encapsulation[J]. International Journal of Energy Research, 2021, 45(9): 13130-13148.
19 Liu J, Baeyens J, Deng Y M, et al. High temperature Mn2O3/Mn3O4 and Co3O4/CoO systems for thermo-chemical energy storage[J]. Journal of Environmental Management, 2020, 267: 110582.
20 白志蕊, 徐洪涛, 屈治国, 等. 相变套管式储热系统放冷性能实验研究[J]. 化工学报, 2020, 71(4): 1580-1587.
Bai Z R, Xu H T, Qu Z G, et al. Experimental study of phase change sleeve tube thermal storage system performance during charging[J]. CIESC Journal, 2020, 71(4): 1580-1587.
21 Ji H C, Wang H X, Yang J Y, et al. Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks[J]. Energy, 2021, 234: 121237.
22 Wan Z J, Wei J J, Qaisrani M A, et al. Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system[J]. Applied Thermal Engineering, 2020, 167: 114775.
23 Lou W R, Fan Y L, Luo L G. Single-tank thermal energy storage systems for concentrated solar power: flow distribution optimization for thermocline evolution management[J]. Journal of Energy Storage, 2020, 32: 101749.
24 Mao Q J, Chen H Z, Yang Y Z. Energy storage performance of a PCM in the solar storage tank[J]. Journal of Thermal Science, 2019, 28(2): 195-203.
25 Singh A, Khaewhom S, Kaistha N. Design and control of a small-scale isolated concentrated solar power generation unit[J]. Industrial & Engineering Chemistry Research, 2018, 57(2): 623-638.
26 Zhang H F, Wang L G, van Herle J, et al. Techno-economic optimization of CO2-to-methanol with solid-oxide electrolyzer[J]. Energies, 2019, 12(19): 3742.
27 Beccali M, Brunone S, Finocchiaro P, et al. Method for size optimisation of large wind-hydrogen systems with high penetration on power grids[J]. Applied Energy, 2013, 102: 534-544.
28 徐英, 杨一凡, 朱萍, 等. 球罐和大型储罐[M]. 北京: 化学工业出版社, 2001: 127-128.
Xu Y, Yang Y F, Zhu P, et al. Spherical Tanks and Large Storage Tanks[M]. Beijing: Chemical Industry Press, 2001: 127-128.
29 Maleki A. Design and optimization of autonomous solar-wind-reverse osmosis desalination systems coupling battery and hydrogen energy storage by an improved bee algorithm[J]. Desalination, 2018, 435: 221-234.
30 马义伟. 空冷器设计与应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 71-95.
Ma Y W. Design and Application of Air Cooler[M]. Harbin: Harbin Institute of Technology Press, 1998: 71-95.
31 Kumar J A. Thermal performance analysis of pump less earthern pipe evaporative air cooler[J]. International Journal of Engineering Research and Applications, 2012, 2(2): 032-040.
[1] 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
[2] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[3] 杨兴富, 陈文, 肖杰, 陈晓东. 反应工程方法在锂电池真空干燥模拟上的应用[J]. 化工学报, 2022, 73(7): 3262-3272.
[4] 杨光, 程鑫, 王峥, 王晔, 张良俊, 吴静怡. 微纳多孔结构中稀薄气体流动渗透率的解析型预测模型[J]. 化工学报, 2022, 73(7): 2895-2901.
[5] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[6] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[7] 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261.
[8] 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707.
[9] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[10] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[11] 黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542.
[12] 杨晖, 李宏泽, 陈泉, 郑泽希, 李然, 孙其诚. 从质量流向漏斗流转变过程中的动力学分析[J]. 化工学报, 2022, 73(6): 2722-2731.
[13] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[14] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[15] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!