化工学报 ›› 2022, Vol. 73 ›› Issue (10): 4399-4409.DOI: 10.11949/0438-1157.20220669
张欣宇1(), 杨晓宏1,2(
), 张燕楠1, 徐佳锟1, 郭枭1, 田瑞1,3
收稿日期:
2022-05-10
修回日期:
2022-09-08
出版日期:
2022-10-05
发布日期:
2022-11-02
通讯作者:
杨晓宏
作者简介:
张欣宇(1981—),女,博士研究生,讲师,1031491945@qq.com
基金资助:
Xinyu ZHANG1(), Xiaohong YANG1,2(
), Yannan ZHANG1, Jiakun XU1, Xiao GUO1, Rui TIAN1,3
Received:
2022-05-10
Revised:
2022-09-08
Online:
2022-10-05
Published:
2022-11-02
Contact:
Xiaohong YANG
摘要:
设计了双碟式光热-光电储热发电系统,针对相变储热系统传热特性进行研究,建立了六纵肋、雪花型肋、梯度树状肋相变储热模型,采用Fluent软件对石蜡蓄释热过程进行模拟。通过非稳态传热温度场和速度场的变化分析石蜡熔化和凝固的传热机理。结果表明,石蜡熔化过程伴随着热传导与自然对流的协同作用,凝固过程对流换热微弱以热传导为主。从场协同的角度分析,采用梯度树状肋使空间温度分布更均匀,可提高流体速度场和温度场的协同程度。石蜡熔化温度分别为315、340、360 K,完全熔化时间依次为224、374、703 s;完全凝固时间依次为3439、1089、842 s。可见,随着熔化温度的升高,完全熔化时间增长,完全凝固时间缩短。因此,在选择相变材料时要综合考虑熔化温度、蓄释热初温和终温及储热量的要求。
中图分类号:
张欣宇, 杨晓宏, 张燕楠, 徐佳锟, 郭枭, 田瑞. 基于二维梯度树状肋相变储热系统强化传热机理[J]. 化工学报, 2022, 73(10): 4399-4409.
Xinyu ZHANG, Xiaohong YANG, Yannan ZHANG, Jiakun XU, Xiao GUO, Rui TIAN. Heat transfer enhancement mechanism of phase change heat storage system based on two-dimensional gradient dendritic fins[J]. CIESC Journal, 2022, 73(10): 4399-4409.
物理量 | 数值 | ||
---|---|---|---|
石蜡 | 铜 | 铝 | |
密度ρ/(kg/m3) | 750 | 8978 | 2719 |
比热容cp /(J/(kg·K)) | 2000 | 381 | 879 |
热导率λ /(W/(m·K)) | 0.2 | 387.6 | 202.4 |
动力黏度μ /(kg/(m·s)) | 0.001 | — | — |
体积膨胀系数α/K-1 | 0.00085 | — | — |
相变热Δh/(kJ/kg) | 255 | — | — |
凝固温度Ts/K | 315.15 | — | — |
熔化温度Tl /K | 317.15 | — | — |
表1 PCM及铝和铜的热物理性质[29]
Table 1 Thermophysical properties of PCM, aluminum and copper[29]
物理量 | 数值 | ||
---|---|---|---|
石蜡 | 铜 | 铝 | |
密度ρ/(kg/m3) | 750 | 8978 | 2719 |
比热容cp /(J/(kg·K)) | 2000 | 381 | 879 |
热导率λ /(W/(m·K)) | 0.2 | 387.6 | 202.4 |
动力黏度μ /(kg/(m·s)) | 0.001 | — | — |
体积膨胀系数α/K-1 | 0.00085 | — | — |
相变热Δh/(kJ/kg) | 255 | — | — |
凝固温度Ts/K | 315.15 | — | — |
熔化温度Tl /K | 317.15 | — | — |
1 | Palacios A, Barreneche C, Navarro M E, et al. Thermal energy storage technologies for concentrated solar power—a review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265. |
2 | Settino J, Sant T, Micallef C, et al. Overview of solar technologies for electricity, heating and cooling production[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 892-909. |
3 | 张欣宇, 杨晓宏, 曹泽宇, 等. 太阳能斯特林混凝土储热系统传热特性研究[J]. 太阳能学报, 2022, 43(5): 213-219. |
Zhang X Y, Yang X H, Cao Z Y, et al. Heat transfer performance of concrete thermal storage system for solar energy striling[J]. Acta Energiae Solaris Sinica, 2022, 43(5): 213-219. | |
4 | Guarino S, Buscemi A, Ciulla G, et al. A dish-stirling solar concentrator coupled to a seasonal thermal energy storage system in the southern Mediterranean Basin: a cogenerative layout hypothesis[J]. Energy Conversion and Management, 2020, 222: 113228. |
5 | 李椿, 王志华, 王建春, 等. 壳管式相变储能换热器性能研究与场协同效应分析[J]. 太阳能学报, 2020, 41(3): 226-233. |
Li C, Wang Z H, Wang J C, et al. Performance study and field synergy analysis of shell and tube phase change energy storage heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 226-233. | |
6 | Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
7 | 杨超, 徐阳, 郑章靖. 二维梯级多孔强化相变储热装置熔化过程研究[J]. 工程热物理学报, 2021, 42(11): 2946-2953. |
Yang C, Xu Y, Zheng Z J. Study on melting process of latent heat thermal energy storage unit strengthened by two-dimensional graded metal foam[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2946-2953. | |
8 | 杨喆, 刘飞, 张涛, 等. TPMS 多孔铝-石蜡复合相变材料蓄热过程数值模拟及实验[J].化工进展, 2022, 41(9): 4918-4927. |
Yang Z, Liu F, Zhang T, et al. Numerical simulation and experiment of heat storage process of TPMS porous aluminum-paraffin composite phase change material[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4918-4927. | |
9 | Xu Y, Li M J, Zheng Z J, et al. Melting performance enhancement of phase change material by a limited amount of metal foam: configurational optimization and economic assessment[J]. Applied Energy, 2018, 212: 868-880. |
10 | Khan Z, Khan Z A. Experimental and numerical investigations of nano-additives enhanced paraffin in a shell-and-tube heat exchanger: a comparative study[J]. Applied Thermal Engineering, 2018, 143: 777-790. |
11 | Yuan Y P, Zhang N, Li T Y, et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: a comparative study[J]. Energy, 2016, 97: 488-497. |
12 | Zhu Z Q, Huang Y K, Hu N, et al. Transient performance of a PCM-based heat sink with a partially filled metal foam: effects of the filling height ratio[J]. Applied Thermal Engineering, 2018, 128: 966-972. |
13 | 王成君, 段志英, 苏琼, 等. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080. |
Wang C J, Duan Z Y, Su Q, et al. Research progress in photo-thermal conversion and storage of multistage porous carbon supported composite phase change materials[J]. Materials Reports, 2020, 34(23): 23074-23080. | |
14 | Xu H T, Wang N, Zhang C Y, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: 115409. |
15 | Bie Y, Li M, Malekian R, et al. Effect of phase transition temperature and thermal conductivity on the performance of latent heat storage system[J]. Applied Thermal Engineering, 2018, 135: 218-227. |
16 | Khan L A, Khan M M. Role of orientation of fins in performance enhancement of a latent thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 175: 115408. |
17 | Yu C, Zhang X, Chen X, et al. Melting performance enhancement of a latent heat storage unit using gradient fins[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119330. |
18 | Liu X D, Huang Y P, Zhang X, et al. Investigation on charging enhancement of a latent thermal energy storage device with uneven tree-like fins[J]. Applied Thermal Engineering, 2020, 179: 115749. |
19 | Safari V, Abolghasemi H, Kamkari B. Experimental and numerical investigations of thermal performance enhancement in a latent heat storage heat exchanger using bifurcated and straight fins[J]. Renewable Energy, 2021, 174: 102-121. |
20 | Huang Y P, Cao D C, Sun D K, et al. Experimental and numerical studies on the heat transfer improvement of a latent heat storage unit using gradient tree-shaped fins[J]. International Journal of Heat and Mass Transfer, 2022, 182: 121920. |
21 | Zhang C B, Li J, Chen Y P. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins[J]. Applied Energy, 2020, 259: 114102. |
22 | Ma B, Zhang X Y, Wang L, et al. Numerical study on melting performance improvement with fractal tree-shaped fins[J]. Physics of Fluids, 2022, 34(4): 047107. |
23 | 过增元, 黄素逸. 场协同原理与强化传热新技术[M]. 北京: 中国电力出版社, 2004. |
Guo Z Y, Huang S Y. Field Synergy Principle and New Technology of Enhanced Heat Transfer[M]. Beijing: China Electric Power Press, 2004. | |
24 | 李志信, 过增元. 对流传热优化的场协同理论[M]. 北京: 科学出版社, 2010. |
Li Z X, Guo Z Y. Field Synergy Theory for Optimization of Convective Heat Transfer[M]. Beijing: Science Press, 2010. | |
25 | 陈洁璐. 基于场协同理论的翅片管蒸发器管外强化换热研究[D]. 武汉: 华中科技大学, 2017. |
Chen J L. Study on heat transfer enhancement of fin-and-tube evaporator based on field synergy theory[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
26 | Gu X, Zheng Z Y, Xiong X C, et al. Heat transfer and flow resistance characteristics of helical baffle heat exchangers with twisted oval tube[J]. Journal of Thermal Science, 2022, 31(2): 370-378. |
27 | Yao P T, Zhai Y L, Li Z H, et al. Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle[J]. Case Studies in Thermal Engineering, 2021, 25: 100963. |
28 | Cui W Z, Mao D X, Lin B, et al. Field synergy analysis on the mechanism of heat transfer enhancement by using nanofluids[J]. Case Studies in Thermal Engineering, 2019, 16: 100554. |
29 | 饶中浩, 刘臣臻. 相变储能实验与分析[M]. 徐州: 中国矿业大学出版社, 2018. |
Rao Z H, Liu C Z. Experiment and Analysis of Phase Change Energy Storage[M]. Xuzhou: China University of Mining & Technology Press, 2018. | |
30 | Vogel J, Felbinger J, Johnson M. Natural convection in high temperature flat plate latent heat thermal energy storage systems[J]. Applied Energy, 2016, 184: 184-196. |
31 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
32 | Vogel J, Thess A. Validation of a numerical model with a benchmark experiment for melting governed by natural convection in latent thermal energy storage[J]. Applied Thermal Engineering, 2019, 148: 147-159. |
33 | Al-Abidi A A, Mat S B, Sopian K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
34 | Seddegh S, Wang X L, Henderson A D. A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials[J]. Applied Thermal Engineering, 2016, 93: 348-358. |
35 | Duan J, Xiong Y L, Yang D. Study on the effect of multiple spiral fins for improved phase change process[J]. Applied Thermal Engineering, 2020, 169: 114966. |
36 | Ho J Y, See Y S, Leong K C, et al. An experimental investigation of a PCM-based heat sink enhanced with a topology-optimized tree-like structure[J]. Energy Conversion and Management, 2021, 245: 114608. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[9] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[10] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 313
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||