化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 30-41.doi: 10.11949/0438-1157.20201519

• 综述与专论 • 上一篇    下一篇

气液分离技术的研究现状

黄锟腾(),陈健勇(),陈颖,罗向龙,梁颖宗   

  1. 广东工业大学材料与能源学院,广东 广州 510006
  • 收稿日期:2020-10-29 修回日期:2021-01-23 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 陈健勇 E-mail:535154983@qq.com;jianyong@gdut.edu.cn
  • 作者简介:黄锟腾(1998—),男,硕士研究生,535154983@qq.com
  • 基金资助:
    国家自然科学基金项目(51736005);广州市科技计划项目(201704030108)

Research status of vapor-liquid separation technology

HUANG Kunteng(),CHEN Jianyong(),CHEN Ying,LUO Xianglong,LIANG Yingzong   

  1. School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • Received:2020-10-29 Revised:2021-01-23 Published:2021-06-20 Online:2021-06-20
  • Contact: CHEN Jianyong E-mail:535154983@qq.com;jianyong@gdut.edu.cn

摘要:

介绍了国内外气液分离技术及设备的研究进展,阐述了重力分离、惯性分离、过滤分离、离心分离和精馏分离的工作原理和设备构成,重点关注了气液分离技术在换热器和制冷系统中的应用,最后对比了各种气液分离技术。现有气液分离机理尚不清晰,且普适性不高。将气液分离与气相相变传热过程结合能实现强化传热和提升系统能效,具有巨大应用前景。

关键词: 气液两相流, 热力学, 分布, 气液分离, 换热器

Abstract:

This paper summarizes the research status of vapor-liquid separation technology and its device. Separations using gravity, inertia, filtration, centrifugation and distillation are detailed analyzed. Attentions are paid to their implementation to heat exchangers and refrigeration systems. Moreover, the advantages and disadvantages are compared. Results show that the mechanisms of the vapor-liquid separation technology are unclear and not universally adopted. Combination of the vapor-liquid separation and vapor-liquid phase change heat transfer has great potential in enhancing heat transfer and improving system efficiency.

Key words: vapor-liquid flow, thermodynamics, distribution, vapor-liquid separation, heat exchanger

中图分类号: 

  • TQ 028.8

图1

重力式气液分离"

图2

两相喷射式制冷系统"

图3

自复叠制冷系统"

图4

管内冷凝传热流型演化和分液冷凝原理"

图5

管翅式分液冷凝器及多孔隔板联箱内气液分离"

图6

气液分离强化流动沸腾传热[37]"

图7

T型管气液分离器[42]"

图8

T型管气体旁通制冷系统[51] (a);T型管冰箱系统[53] (b)"

图9

T型管气液分离冷凝器"

图10

波纹(折)板式气液分离器的板型"

图11

金属丝网[59]"

图12

丝网管气液分离冷凝器[64]"

图13

离心式气液分离器"

图14

精馏设备及精馏原理"

表1

气液分离设备的优缺点"

类型设备名称优点缺点制冷系统应用
重力式气液分离器结构简单,流动阻力小,维护费用低气液分离效率低,需要较长停留时间和行程压缩机前,两相喷射制冷系统,自复叠制冷系统
多孔隔板联箱结构简单,体积小,可与换热器一体化可能出现液相溢出和气相击穿分液冷凝器,空调,热泵热水器
惯性式T型管简单实用,适应性好气液分离效率一般,组分分离效果差分液冷凝器,气体旁通制冷系统,家用冰箱
波纹板式结构简单、处理量大,分离效率比重力式高阻力大,小于25 μm的液滴分离效果较差
过滤式金属丝网分离效率高,有效分离粒径0.1~10 μm气体流速大和带液严重时,分离效果差,金属网易堵塞,压降增大分液冷凝器
离心式管柱可用于压力容器范围窄,超过规定流速后,分离效率急剧下降
轴流分离效率高,体积小结构设计困难,内部流动复杂,压力损失大
螺旋分离效率高,体积小结构复杂,设计困难压缩机前
精馏式精馏塔分离效率高,还可进行组分分离分离效率高,成本高,还需额外的冷热源氨水吸收式制冷系统,自复叠制冷系统,变容量热泵系统
61 谢剑, 何孝天, 程愉, 等. 丝网表面液滴撞击行为及气液分离器设计优化[J]. 工程热物理学报, 2016, 37(6): 1230-1236.
Xie J, He X T, Cheng Y, et al. Behavior of a droplet impacting on mesh screen and optimal design of the gas-liquid separator [J]. Journal of Engineering Thermophysics, 2016, 37(6): 1230-1236.
1 杨晓勇, 代健, 王炳捷, 等. 环隙式离心萃取器内部两相流动研究进展[J]. 化工学报, 2021, 72(1): 483-494.
Yang X Y, Dai J, Wang B J, et al. Advancement in two-phase flow of annular centrifugal extractor [J]. CIESC Journal, 2021, 72(1): 483-494.
62 Xie J, Xu J L, Liang C, et al. A comprehensive understanding of enhanced condensation heat transfer using phase separation concept [J]. Energy, 2019, 172: 661-674.
63 涂文斌, 王匀, 朱英霞, 等. 多孔气液分离强化传热结构单相流中传热性能[J]. 工程热物理学报, 2017, 38(11): 2408-2414.
2 吉雷, 王兴, 李正贵, 等. 天然气新型气液分离器性能试验研究[J]. 热能动力工程, 2020, 35(3): 116-121.
Ji L, Wang X, Li Z G, et al. Experimental study on the performance of new gas-liquid separator of natural gas [J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(3): 116-121.
63 Tu W B, Wang Y, Zhu Y X, et al. Thermal characteristic of metal porous media inserts in the single phase flow [J]. Journal of Engineering Thermophysics, 2017, 38(11): 2408-2414.
64 Cao S, Ji X B, Xu J L. R245fa condensation heat transfer in a phase separation condenser [J]. Experimental Thermal and Fluid Science, 2018, 98: 346-361.
3 黎亚洲, 廖晓炜, 刘峰, 等. 油气分离装置的研究进展简介[J]. 中国特种设备安全, 2020, 36(7): 22-25, 30.
Li Y Z, Liao X W, Liu F, et al. Research progress and problem analysis of oil and gas separation [J]. China Special Equipment Safety, 2020, 36(7): 22-25, 30.
65 吕家明, 叶奇昉, 陈江平. 基于计算流体力学模型的旋流分离器的优化设计[J]. 制冷学报, 2010, 31(3): 11-15.
Lü J M, Ye Q F, Chen J P. Optimization of cyclone vapor-liquid separator with CFD simulation [J]. Journal of Refrigeration, 2010, 31(3): 11-15.
4 孙李. 气液分离器分离效果仿真研究[J]. 制冷与空调, 2017, 17(2): 22-26.
Sun L. Numerical research of separating effect for gas-liquid separator [J]. Refrigeration and Air-Conditioning, 2017, 17(2): 22-26.
5 Bahadori A. Natural Gas Processing: Technology and Engineering Design [M]. Amsterdam: Gulf Professional Publishing, 2014.
6 吴腾飞, 臧润清, 刘江彬. 制冷系统气液两相分离的理论研究[J]. 过滤与分离, 2013, 23(3): 18-21.
Wu T F, Zang R Q, Liu J B. Theoretical study on gas-liquid two-phase gravity separation of refrigeration system [J]. Journal of Filtration & Separation, 2013, 23(3): 18-21.
7 王丹东, 柳慈翀, 梁媛媛, 等. 气液分离器的可视化试验研究[J]. 制冷技术, 2018, 38(3): 19-23, 30.
Wang D D, Liu C C, Liang Y Y, et al. Experimental study on visualization of gas-liquid separator [J]. Chinese Journal of Refrigeration Technology, 2018, 38(3): 19-23, 30.
8 张铭, 张晓迪, 宋德跃, 等. 制冷系统气液分离器有效容积的设计分析[J]. 制冷与空调(四川), 2015, 29(4): 435-439.
Zhang M, Zhang X D, Song D Y, et al. Analysis of the effective volume of gas-liquid separator in refrigeration system [J]. Refrigeration & Air Conditioning, 2015, 29(4): 435-439.
9 胡文举, 葛宇, 贾鹏, 等. 微通道蒸发器前气液分离对空气源热泵性能影响的试验研究[J]. 可再生能源, 2020, 38(10): 1326-1332.
Hu W J, Ge Y, Jia P, et al. Experimental study on the effect of gas-liquid separation ahead of microchannel evaporator on the performance air source heat pump [J]. Renewable Energy Resources, 2020, 38(10): 1326-1332.
10 Zhang Z Y, Feng X, Tian D Z, et al. Progress in ejector-expansion vapor compression refrigeration and heat pump systems [J]. Energy Conversion and Management, 2020, 207: 112529.
11 Lin C, Xu C M, Yue B, et al. Experimental study on the separator in ejector-expansion refrigeration system [J]. International Journal of Refrigeration, 2019, 100: 307-314.
12 陈光明, 张荣涛, 杨申音, 等. 颠簸状态下制冷系统气液分离器性能的影响研究[J]. 流体机械, 2018, 46(2): 54-59.
Chen G M, Zhang R T, Yang S Y, et al. An investigation on the liquid-vapor separator performance for refrigeration system under tossing conditions [J]. Fluid Machinery, 2018, 46(2): 54-59.
13 芮胜军, 张华, 贺滔, 等. 自动复叠制冷系统非共沸混合工质组分变化特性[J]. 制冷学报, 2016, 37(4): 39-45.
Rui S J, Zhang H, He T, et al. Composition change characteristics of non-azeotropic mixturesof auto-cascade refrigeration system [J]. Journal of Refrigeration, 2016, 37(4): 39-45.
14 李新, 刘春梅, 侯予, 等. R14/R22自动复叠制冷系统设计[J]. 制冷与空调, 2008, 8(2): 95-98.
Li X, Liu C M, Hou Y, et al. Design of an auto-cascade R14/R22 refrigeration system [J]. Refrigeration and Air-Conditioning, 2008, 8(2): 95-98.
15 刘建丽, 公茂琼, 吴剑峰, 等. 一种新型分凝分离式混合工质内复叠节流制冷机的试验研究[J]. 低温与超导, 2001, 29(2): 6-11.
Liu J L, Gong M Q, Wu J F, et al. Experimental research on a new type of mixed-refrigerant fractionation refrigeration cycle [J]. Cryogenics and Super Conductivity, 2001, 29(2): 6-11.
16 彭晓峰, 吴迪, 陆规, 等. 分液式空气冷凝器: 1975311 [P]. 2007-06-06.
Peng X F, Wu D, Lu G, et al. Air condenser with Liquid-vapor separation technology: 1975311 [P]. 2007-06-06.
17 陈健勇, 李俊杰, 陈颖. 分液冷凝器及其空调/热泵系统的研究进展[J]. 制冷与空调, 2020, 20(6): 58-67, 89.
Chen J Y, Li J J, Chen Y. Research status of liquid-separation condenser and its implementations in air-conditioning/heat pump system [J]. Refrigeration and Air-Conditioning, 2020, 20(6): 58-67, 89.
18 Zhong T M, Chen Y, Zheng W X, et al. Experimental investigation on microchannel condensers with and without liquid-vapor separation headers [J]. Applied Thermal Engineering, 2014, 73(2): 1510-1518.
19 Zhong T M, Ding L X, Chen S, et al. Effect of a double-row liquid-vapor separation condenser on an air-conditioning unit performance [J]. Applied Thermal Engineering, 2018, 142: 476-482.
20 Chen Y, Hua N, Deng L S. Performances of a split-type air conditioner employing a condenser with liquid-vapor separation baffles [J]. International Journal of Refrigeration, 2012, 35(2): 278-289.
21 Chen J Y, Chen L X, Lin X, et al. Performance of heat pump water heater (HPWH) with and without liquid-separation: detailed experimental comparisons [J]. Applied Thermal Engineering, 2020, 179: 115713.
22 Lu P, Luo X L, Wang J, et al. Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation [J]. Energy Conversion and Management, 2021, 230: 113771.
23 Mo S P, Chen X Q, Chen Y, et al. Passive control of gas-liquid flow in a separator unit using an apertured baffle in a parallel-flow condenser [J]. Experimental Thermal and Fluid Science, 2014, 53: 127-135.
24 谭凯, 陈颖, 吴迪. 毛细作用气液分离过程的理论分析[J]. 广东工业大学学报, 2012, 29(4): 90-95.
Tan K, Chen Y, Wu D. A theoretical analysis of the capillary effect on liquid vapor separation [J]. Journal of Guangdong University of Technology, 2012, 29(4): 90-95.
25 Zhang X, Jia L, Peng Q, et al. Experimental study of condensation heat transfer in a condenser with a liquid-vapor separator [J]. Applied Thermal Engineering, 2019, 152: 196-203.
26 张旋. 分液式微细槽道冷凝换热器的试验研究[D]. 北京: 北京交通大学, 2018.
Zhang X. Experiment investigation on micro/mini-channel condenser with liquid-vapor separator [D]. Beijing: Beijing Jiaotong University, 2018.
27 郭文仙, 陈颖, 莫松平. 带多孔隔板的多支管联箱内两相流流动的数值分析[J]. 热科学与技术, 2014, 13(1): 40-45.
Guo W X, Chen Y, Mo S P. Numerical simulation of two phase flow in manifold with perforated plate [J]. Journal of Thermal Science and Technology, 2014, 13(1): 40-45.
28 乐文璞. 多支管分液联箱结构优化研究[D]. 广州: 广东工业大学, 2015.
Yue W P. The structural optimization of liquid-vapor separation header with multi-pass heating tube [D]. Guangzhou: Guangdong University of Technology, 2015.
29 李逸帆, 黄锟腾, 罗向龙, 等. 分液联箱内有机工质气液分离过程数值模拟及对比研究[J]. 广东工业大学学报, 2020, 37(5): 105-110.
Li Y F, Huang K T, Luo X L, et al. Numerical simulation and comparative study of liquid-vapor separation of organic working fluid in liquid-separation headers [J]. Journal of Guangdong University of Technology, 2020, 37(5): 105-110.
30 Chen J Y, Zhu K D, Luo X L, et al. Application of liquid-separation condensation to plate heat exchanger: comparative studies [J]. Applied Thermal Engineering, 2019, 157: 113739.
31 朱康达, 陈颖, 陈健勇, 等. 分液板式冷凝器的热力性能评价[J]. 广东工业大学学报, 2019, 36(5): 48-55, 70.
Zhu K D, Chen Y, Chen J Y, et al. Thermodynamic performance evaluation of liquid-vapor separation plate condenser [J]. Journal of Guangdong University of Technology, 2019, 36(5): 48-55, 70.
32 Liang Z Y, Chen J Y, Luo X L, et al. Investigation of plate condenser with multiply liquid-separations [C]∥ International Conference on Applied Energy 2019. Västerås, Sweden, 2019.
33 Zheng M R, Han D, Huang L, et al. Experimental and numerical evaluation of plate type separator used in desalination [J]. Desalination, 2019, 450: 33-45.
34 王华峰, 诸凯, 张密, 等. 冷凝器分液特性试验研究[J]. 低温与超导, 2015, 43(1): 69-73.
Wang H F, Zhu K, Zhang M, et al. Experimental study on liquid-vapor separation characteristics of condenser [J]. Cryogenics & Superconductivity, 2015, 43(1): 69-73.
35 李连涛, 诸凯, 刘圣春, 等. 带有中间分液结构的管壳式冷凝器试验研究[J]. 化工进展, 2016, 35(5): 1332-1337.
Li L T, Zhu K, Liu S C, et al. Experimental study of shell and tube condenser with middle liquid separation structure [J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1332-1337.
36 黄锟腾, 陈颖, 陈健勇, 等. 一种具有干度调控功能的蒸发器: 201921527123.5 [P]. 2020-06-19.
Huang K T, Chen Y, Chen J Y, et al. An evaporator with vapor quality control: 201921527123.5 [P]. 2020-06-19.
37 Chen J Y, Ding R, Li Y H, et al. Application of a vapor-liquid separation heat exchanger to the air conditioning system at cooling and heating modes [J]. International Journal of Refrigeration, 2019, 100: 27-36.
38 Fang S B, Mu L. Heat and mass transfer analysis during gas-liquid separation in an evaporator device for desalination [J]. Desalination, 2020, 486: 114430.
39 丁榕, 李云海, 陈健勇, 等. 带分液结构蒸发器的性能研究[J]. 广东工业大学学报, 2018, 35(4): 105-110.
Ding R, Li Y H, Chen J Y, et al. A performance study of the evaporator with a vapor-liquid separation [J]. Journal of Guangdong University of Technology, 2018, 35(4): 105-110.
40 Fan C C, Yan G, Han B L, et al. Experimental study on an inverter heat pump air conditioner with a vapor-bypassed evaporator [J]. International Journal of Refrigeration, 2020, 109: 180-187.
41 Fan C C, Yan G, Xiong T, et al. Simulation study on the performance of a vapor-bypassed evaporator for heat pump applications [J]. International Journal of Refrigeration, 2021, 122: 47-58.
42 Yang B, Su W, Deng S, et al. State-of-art of branching T-junction: experiments, modeling, developing prospects and applications [J]. Experimental Thermal and Fluid Science, 2019, 109: 109895.
43 Yang B, Su W, Deng S, et al. State-of-art of impacting T-junction: phase separation, constituent separation and applications [J]. International Journal of Heat and Mass Transfer, 2020, 148: 119067.
44 Su W, Hwang Y, Zheng N, et al. Experimental study on the constituent separation performance of binary zeotropic mixtures in horizontal branch T-junctions [J]. International Journal of Heat and Mass Transfer, 2018, 127: 76-87.
45 Zheng N, Zhao L, Hwang Y, et al. Experimental study on two-phase separation performance of impacting T-junction [J]. International Journal of Multiphase Flow, 2016, 83: 172-182.
46 Lu P, Zhao L, Deng S, et al. Simulation of two-phase refrigerant separation in horizontal T-junction [J]. Applied Thermal Engineering, 2018, 134: 333-340.
47 张晶, 赵力, 郑楠. 有机工质在竖直撞击T形管内相分离试验研究[J]. 工程热物理学报, 2016, 37(8): 1744-1752.
Zhang J, Zhao L, Zheng N. Experimental study of the phase-separation for the organic working fluid in the vertical impact T junction [J]. Journal of Engineering Thermophysics, 2016, 37(8): 1744-1752.
48 Yang B, Deng S, Su W, et al. Experimental investigation on phase separation comparison between single and double T-junctions [J]. Experimental Thermal and Fluid Science, 2020, 118: 110171.
49 Zheng N, Hwang Y, Zhao L, et al. Experimental study on the distribution of constituents of binary zeotropic mixtures in vertical impacting T-junction [J]. International Journal of Heat and Mass Transfer, 2016, 97: 242-252.
50 Lu P, Deng S, Yang B, et al. Numerical simulation on constituents separation of R134a/R600a in a horizontal T-junction [J]. International Journal of Refrigeration, 2020, 115: 148-157.
51 Tuo H F, Hrnjak P. Vapor-liquid separation in a vertical impact T-junction for vapor compression systems with flash gas bypass [J]. International Journal of Refrigeration, 2014, 40: 189-200.
52 Tuo H F, Hrnjak P. Flash gas bypass in mobile air conditioning system with R134a [J]. International Journal of Refrigeration, 2012, 35(7): 1869-1877.
53 Janke I, Silveira A D S, Melo C. A design approach for liquid separators applied to household refrigerators [J]. International Journal of Refrigeration, 2019, 98: 354-361.
54 Janke I, Boeng J, Melo C. An experimental analysis over phase separators applied to household refrigerators [J]. Applied Thermal Engineering, 2020, 169: 114926.
55 Li J, Hrnjak P. Separation in condensers as a way to improve efficiency [J]. International Journal of Refrigeration, 2017, 79: 1-9.
56 Li J, Hrnjak P. Improvement of condenser performance by phase separation confirmed experimentally and by modeling [J]. International Journal of Refrigeration, 2017, 78: 60-69.
57 薛运煃, 刘世勋, 解官道. 带钩波形板汽水分离器的试验研究[J]. 核动力工程, 1989, 10(2): 13-18.
Xue Y K, Liu S X, Xie G D. Test and study of the chevron steam separator [J]. Nuclear Power Engineering, 1989, 10(2): 13-18.
58 Mendiboure B, Dicharry C, Marion G, et al. Contribution to the Modelization of the Surfactant Concentration Influence on Droplet Size Distributions in Oil/Water Emulsions [M]// LaggnerP, Glatter O. Trends in Colloid and Interface Science Ⅶ. Germany: Steinkopff, 1993: 307-311.
59 任相军, 王振波, 金有海. 气液分离技术设备进展[J]. 过滤与分离, 2008, 18(3): 43-47.
Ren X J, Wang Z B, Jin Y H. Progressing of gas-liquid separation technology and equipment [J]. Journal of Filtration & Separation, 2008, 18(3): 43-47.
60 虢国成, 王满生. 丝网气液分离器分离机理分析研究[J]. 食品与机械, 2010, 26(4): 98-101, 108.
Guo G C, Wang M S. Separation mechanism analysis of wire-mesh gas-liquid separator [J]. Food & Machinery, 2010, 26(4): 98-101, 108.
66 张慢来, 冯进, 刘孝光, 等. 一种新型离心式气液分离器分离性能的数值模拟与试验研究[J]. 流体机械, 2007, 35(8): 9-13, 28.
Zhang M L, Feng J, Liu X G, et al. Numerical simulation and experimental study on separation performance in a new kind of centrifugal gas-liquid separator [J]. Fluid Machinery, 2007, 35(8): 9-13, 28.
67 孙福江, 王永伟, 张扬, 等. 新型高效离心式气液分离器设计与试验研究[J]. 石油矿场机械, 2009, 38(10): 60-64.
Sun F J, Wang Y W, Zhang Y, et al. Design and test study of new high efficiency centrifugal separator for gas-liquid separation [J]. Oil Field Equipment, 2009, 38(10): 60-64.
68 梁龙辉. 超声速旋流分离器的流场特性分析与脱水性能研究[D]. 青岛: 青岛科技大学, 2019.
Liang L H. Analysis of flow field characteristics and investigate on dehydration performance of supersonic cyclone separator [D]. Qingdao: Qingdao University of Science & Technology, 2019.
69 Wang Y G, Yu Y, Hu D P, et al. Improvement of drainage structure and numerical investigation of droplets trajectories and separation efficiency for supersonic separators [J]. Chemical Engineering and Processing - Process Intensification, 2020, 151: 107844.
70 陆至羚, 柳建华, 张良, 等. 氨水吸收式制冷系统性能与精馏性能试验分析[J]. 流体机械, 2015, 43(4): 66-69.
Lu Z L, Liu J H, Zhang L, et al. Experimental analysis of ammonia absorption refrigeration system performance and distillation performance [J]. Fluid Machinery, 2015, 43(4): 66-69.
71 孔丁峰, 柳建华, 王瑾, 等. 单级氨吸收式制冷机精馏塔数值模拟与试验[J]. 化工进展, 2010, 29(10): 1825-1831, 1856.
Kong D F, Liu J H, Wang J, et al. Experiment and simulation of rectification process with sieve trays for a single stage ammonia-water absorption chiller [J]. Chemical Industry and Engineering Progress, 2010, 29(10): 1825-1831, 1856.
72 刘志勇, 陈光明, 王勤, 等. 具有精馏装置的自动复叠制冷循环的试验研究[J]. 流体机械, 2004, 32(10): 50-52.
Liu Z Y, Chen G M, Wang Q, et al. Experimental study on auto-cascade refrigeration system with rectification column [J]. Fluid Machinery, 2004, 32(10): 50-52.
73 刘利华, 张丽娜, 陈光明. 混合工质变浓度容量调节装置的研究现状[J]. 制冷学报, 2007, 28(6): 35-40.
Liu L H, Zhang L N, Chen G M. Capacity modulation device with changing concentration of mixture refrigerant: a state-of-the-art review [J]. Journal of Refrigeration, 2007, 28(6): 35-40.
[1] 赵芷慧, 李鹏, 吴栋梁, 张宏彬, 孙培杰, 黄永华. 节流前过冷度和压力对液氮节流特性的影响[J]. 化工学报, 2021, 72(S1): 106-112.
[2] 王兆奇, 李孟山, 胡海涛, 魏文建. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119.
[3] 徐玲玲, 蒲亮. 基于热短路问题的仿生地埋管换热器模拟[J]. 化工学报, 2021, 72(S1): 134-139.
[4] 唐靖轩, 刘轶伦, 何巍, 沈旭柱, 王勤, 陈光明. 双进双出气泡泵输送性能[J]. 化工学报, 2021, 72(S1): 140-145.
[5] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[6] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[7] 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256.
[8] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[9] 海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
[10] 王佳星, 赵家睿, 李斯特, 付媛, 刘凤杰, 韦昌. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318-325.
[11] 顾潇, 邹慧明, 韩欣欣, 唐明生, 田长青. 基于余热回收的电动客车喷射补气热泵的制热性能[J]. 化工学报, 2021, 72(S1): 326-335.
[12] 邹慧明, 王英琳, 李旋, 唐明生, 田长青. R290直线压缩机变工况制冷性能[J]. 化工学报, 2021, 72(S1): 342-347.
[13] 崔运浩, 乔建新, 王晓涛, 宋斌, 阳朝辉, 戴巍, 李海冰. 普冷温区斯特林制冷机[J]. 化工学报, 2021, 72(S1): 390-397.
[14] 陈建业, 丁月, 吴钊, 禹云星, 邵双全. 带涡流管的新型加氢流程数值研究[J]. 化工学报, 2021, 72(S1): 461-466.
[15] 张经伟, 刘永阳, 刘东, 邵国栋, 李元鲁, 刘舫辰, 杜文静. 竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性[J]. 化工学报, 2021, 72(S1): 475-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[2] 潘海华, 李啸风, 李浩然, 刘迪霞, 韩世钧. 双亲分子在油水界面的行为研究[J]. CIESC Journal, 2003, 11(4): 446 -451 .
[3] Pallab Ghosh. 用不可逆过程热力学模型估算通过纳米过滤膜电解质和有机化合物的分离[J]. CIESC Journal, 2003, 11(5): 583 -588 .
[4] 张治山, 赵文, 王艳丽, 周传光, 袁希钢. 基于瞬时目标函数曲线特性的反应器网络综合[J]. CIESC Journal, 2003, 11(4): 436 -440 .
[5] 佟晓冬, 杨征, 董晓燕, 孙彦. 利用膨胀床吸附技术单步纯化分子伴侣—GroEL[J]. CIESC Journal, 2003, 11(4): 460 -463 .
[6] 高军, Kenneth N. Marsh. 天然气水合物生成焓的实验研究[J]. CIESC Journal, 2003, 11(3): 276 -279 .
[7] 褚良银, 朱家骅, 陈文梅,NIITSUMA Takuya, YAMAGUCHI Takeo, NAKAO Shin-ichi. 接枝量对等离子体接枝聚异丙基丙烯酰胺开关的多孔膜的温度感应透过性的影响[J]. CIESC Journal, 2003, 11(3): 269 -275 .
[8] 冀秀玲, 张金利, 李(韦华), 韩振亭, 王一平. 基质穿膜作用对苯酚生物降解动力学的影响[J]. CIESC Journal, 2003, 11(2): 151 -155 .
[9] 江永亨, 王军, 金以慧. 基于增广森林结构的一般网络最小费用问题瓶颈分析[J]. CIESC Journal, 2003, 11(1): 62 -67 .
[10] 代小平, 余长春, 李强, 张长斌, 江启滢, 沈师孔. 联合两段氧化制合成气/F-T合成的GTL工艺和催化剂[J]. CIESC Journal, 2003, 11(1): 85 -89 .