化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4496-4503.doi: 10.11949/0438-1157.20210215
马生贵1,2,3(),田博文1,周雨薇1,陈琳1,江霞1,2,3(
),高涛4
Shenggui MA1,2,3(),Bowen TIAN1,Yuwei ZHOU1,Lin CHEN1,Xia JIANG1,2,3(
),Tao GAO4
摘要:
利用密度泛函理论研究H2S分子在氮掺杂Stone-Wales(SW)缺陷石墨烯上的吸附行为,通过吸附能、差分电荷密度、Bader电荷和电子态密度等分析了H2S分子在SW缺陷石墨烯及氮掺杂SW缺陷石墨烯上的吸附差异。计算结果表明氮原子掺杂可以有效提升H2S分子与石墨烯表面的相互作用,并加强二者之间的电荷转移。其中,氮原子主要作为电子传递的桥梁参与H2S与石墨烯表面之间的电荷转移。H2S分子被选择性吸附在SW缺陷及氮掺杂SW缺陷石墨烯的五元碳环中心处,这说明五元碳环的电荷分布促进H2S分子的吸附行为。
中图分类号:
1 | 谢乐, 蒋崇文. 生物滴滤塔去除高浓度H2S废气的模拟研究[J]. 化工学报, 2021, 72(8): 4346-4353. |
Xie L, Jiang C W. Simulation study on the removal of high concentration H2S waste gas by biotrickling filter[J]. CIESC Journal, 2021, 72(8): 4346-4353. | |
2 | 张敏, 李涛, 陈曙旸, 等. 我国硫化氢中毒的特点与控制对策[J]. 工业卫生与职业病, 2005, 31(1): 12-14. |
Zhang M, Li T, Chen S Y, et al. Characteristics and control measures of hydrogen sulfide poisoning in China [J]. Industrial Health and Occupational Diseases, 2005, 31(1): 12-14. | |
3 | 杨嫱, 董小刚, 贺雪红, 等. 油田硫化氢腐蚀原因及防护措施[J]. 化工设计通讯, 2019, 45(8): 45-46. |
Yang Q, Dong X G, He X H, et al. Causes and protective measures of hydrogen sulfide in oil fields[J]. Chemical Engineering Design Communications, 2019, 45(8): 45-46. | |
4 | 杨振宇. 关于硫化氢废气处理新方法研究[J]. 节能与环保, 2019 (7): 75-77. |
Yang Z Y. Study on new treatment method of hydrogen sulfide waste gas[J]. Energy Conservation & Environmental Protection,2019 (7): 75-77. | |
5 | Bagreev A, Bandosz T J. H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification[J]. Carbon, 2001, 39(15): 2303-2311. |
6 | Adib F, Bagreev A, Bandosz T J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons[J]. Langmuir, 2000, 16(4): 1980-1986. |
7 | Yang W J, Gao Z Y, Liu X S, et al. Single-atom iron catalyst with single-vacancy graphene-based substrate as a novel catalyst for NO oxidation: a theoretical study[J]. Catalysis Science & Technology, 2018, 8(16): 4159-4168. |
8 | Tetlow H, Posthuma de Boer J, Ford I J, et al. Growth of epitaxial graphene: theory and experiment[J]. Physics Reports, 2014, 542(3): 195-295. |
9 | 张慧娟. SO2和NO在石墨烯氧化物上吸附氧化的第一性原理研究[D]. 昆明: 昆明理工大学, 2015. |
Zhang H J. A first principles study of adsorption and oxidation of SO2 and NO by graphene oxides[D]. Kunming: Kunming University of Science and Technology, 2015. | |
10 | Zhou Q X, Fu Z B, Tang Y J, et al. First-principle study of the transition-metal adatoms on B-doped vacancy-defected graphene[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60: 133-138. |
11 | Ye X, Ma S G, Jiang X, et al. The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: a review[J]. Chinese Chemical Letters, 2019, 30(12): 2123-2131. |
12 | Gao Z Y, Yang W J, Ding X L, et al. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(10): 7333-7341. |
13 | Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): b864. |
14 | Mineva T, Krishnamurty S, Salahub D R, et al. Temperature dependence of the molecular conformations of dilauroyl phosphatidylcholine: a density functional study[J]. International Journal of Quantum Chemistry, 2013, 113(5): 631-636. |
15 | Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Physical Review, 1966, 145(2): 561. |
16 | Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study[J]. Physical Review B, 2008, 77(12): 125416. |
17 | Lazar P, Karlický F, Jurečka P, et al. Adsorption of small organic molecules on graphene[J]. Journal of the American Chemical Society, 2013, 135(16): 6372-6377. |
18 | Ambrusi R E, Luna C R, Juan A, et al. DFT study of Rh-decorated pristine, B-doped and vacancy defected graphene for hydrogen adsorption[J]. RSC Advances, 2016, 6(87): 83926-83941. |
19 | Yang W J, Gao Z Y, Liu X S, et al. Directly catalytic reduction of NO without NH3 by single atom iron catalyst: a DFT calculation[J]. Fuel, 2019, 243: 262-270. |
20 | Zhou Q X, Wang C Y, Fu Z B, et al. Adsorption of formaldehyde molecule on Stone-Wales defected graphene doped with Cr, Mn, and Co: a theoretical study[J]. Computational Materials Science, 2014, 83: 398-402. |
21 | 刘笑涵. 石墨烯气体传感器吸附CO和CO2性能研究[D]. 西安: 西安电子科技大学, 2019. |
Liu X H. Study for adsorption of CO and CO2 on graphene gas sensor[D]. Xi'an: Xidian University, 2019. | |
22 | Dai J Y, Yuan J M, Giannozzi P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study[J]. Applied Physics Letters, 2009, 95(23): 232105. |
23 | Jia X T, Zhang H, Zhang Z M, et al. Effect of doping and vacancy defects on the adsorption of CO on graphene[J]. Materials Chemistry and Physics, 2020, 249: 123114. |
24 | Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50. |
25 | Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186. |
26 | Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review. B, Condensed Matter, 1993, 48(17): 13115-13118. |
27 | Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. |
28 | Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758. |
29 | Goerigk L, Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[J]. Physical Chemistry Chemical Physics, 2011, 13(14): 6670-6688. |
30 | Zhang H P, Luo X G, Song H T, et al. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene[J]. Applied Surface Science, 2014, 317: 511-516. |
[1] | 韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538. |
[2] | 李宇明, 刘梓烨, 张启扬, 王雅君, 崔国庆, 姜桂元, 贺德华. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932. |
[3] | 夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848. |
[4] | 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879. |
[5] | 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398. |
[6] | 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391. |
[7] | 唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652. |
[8] | 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554. |
[9] | 奥德, 张皓冰, 吕美婵, 王海涛, 常娜. MOF-199@GO改性PVDF荷电纳滤膜的制备及其性能[J]. 化工学报, 2020, 71(S2): 297-305. |
[10] | 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22. |
[11] | 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453. |
[12] | 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485. |
[13] | 田隆, 刘婷, 孙克宁. 用于水质净化的氧化石墨烯膜研究进展[J]. 化工学报, 2020, 71(9): 4112-4130. |
[14] | 冯雪廷, 矫庆泽, 李群, 冯彩虹, 赵芸, 黎汉生, 李海军, 蔡惠群. NiCo2S4/N,S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324. |
[15] | 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838. |
|