化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4496-4503.doi: 10.11949/0438-1157.20210215

• 热力学 • 上一篇    下一篇

氮掺杂Stone-Wales缺陷石墨烯吸附H2S的密度泛函理论研究

马生贵1,2,3(),田博文1,周雨薇1,陈琳1,江霞1,2,3(),高涛4   

  1. 1.四川大学建筑与环境学院,四川 成都 610065
    2.国家烟气脱硫工程技术研究中心,四川 成都 610065
    3.四川大学 宜宾园区,四川 宜宾 644000
    4.四川大学原子与分子物理研究所,四川 成都 610065
  • 收稿日期:2021-02-04 修回日期:2021-05-11 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 江霞 E-mail:masgui@scu.edu.cn;xjiang@scu.edu.cn
  • 作者简介:马生贵(1990—),男,博士,助理研究员,masgui@scu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(51778383);四川大学-泸州市校市战略合作项目(2020CDLZ-15);大气污染源头控制与资源化四川省青年科技创新研究团队(2020JDTD0005)

DFT study of adsorption of H2S on N-doped Stone-Wales defected graphene

Shenggui MA1,2,3(),Bowen TIAN1,Yuwei ZHOU1,Lin CHEN1,Xia JIANG1,2,3(),Tao GAO4   

  1. 1.College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
    2.National Engineering Research Center for Flue Gas Desulfurization, Sichuan University, Chengdu 610065, Sichuan, China
    3.Sichuan University Yibin Park, Yibin 644000, Sichuan, China
    4.Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2021-02-04 Revised:2021-05-11 Published:2021-09-05 Online:2021-09-05
  • Contact: Xia JIANG E-mail:masgui@scu.edu.cn;xjiang@scu.edu.cn

摘要:

利用密度泛函理论研究H2S分子在氮掺杂Stone-Wales(SW)缺陷石墨烯上的吸附行为,通过吸附能、差分电荷密度、Bader电荷和电子态密度等分析了H2S分子在SW缺陷石墨烯及氮掺杂SW缺陷石墨烯上的吸附差异。计算结果表明氮原子掺杂可以有效提升H2S分子与石墨烯表面的相互作用,并加强二者之间的电荷转移。其中,氮原子主要作为电子传递的桥梁参与H2S与石墨烯表面之间的电荷转移。H2S分子被选择性吸附在SW缺陷及氮掺杂SW缺陷石墨烯的五元碳环中心处,这说明五元碳环的电荷分布促进H2S分子的吸附行为。

关键词: 密度泛函理论, 氮掺杂, Stone-Wales缺陷, 石墨烯, H2S吸附

Abstract:

Density functional theory is used to study the adsorption behavior of H2S molecules on nitrogen-doped Stone-Wales (SW) defected graphene. The adsorption differences of H2S molecules on SW defect graphene and nitrogen-doped SW defected graphene were analyzed by adsorption energy, differential charge density, Bader charge and electronic density of states. Computation results showed that doping of N atom can improve the interaction between H2S molecule and graphene sheet effectively, and it can increase the charge transfer between them. The nitrogen atom is mainly used as the bridge for electron transfer between H2S and graphene surface. H2S molecules were adsorbed selectively on the hollow of pentatomic carbon of SW defected graphene and nitrogen-doped SW defected graphene, which indicated that the charge distribution of the pentatomic carbon could promote the occurrence of adsorption.

Key words: density functional theory (DFT), N-doped, Stone-Wales defect, graphene, H2S adsorption

中图分类号: 

  • X 511

图1

能量收敛性测试:(a) k点;(b) 截断能"

图2

SW缺陷石墨烯几何优化构型俯视图(Top、Bridge、Hollow-5和Hollow-7指H2S分子的吸附位点,数字1~5指氮原子的掺杂位点)"

表1

SW缺陷石墨烯吸附H2S分子的吸附能"

H2S分子初始构型的几何方向吸附位点吸附能/eV
H-S键平行于石墨烯表面Top-0.40
Hollow-5-0.15
Hollow-7-0.14
Bridge-0.17
硫原子朝向石墨烯Top-0.35
Hollow-5-0.51
Hollow-7-0.13
Bridge-0.35
氢原子朝向石墨烯Top-0.15
Hollow-5-0.16
Hollow-7-0.15
Bridge-0.14

图3

H2S分子在SW缺陷石墨烯的三种吸附位点上的最稳定构型:(a) Top位点上吸附构型的侧视图和俯视图;(b) Hollow-5位点上吸附构型的侧视图和俯视图;(c) Bridge位点上吸附构型的侧视图和俯视图"

图4

S-Hollow-5吸附体系的电荷密度(a)和差分电荷密度图(b)(等值面值:0.0001)"

表2

S-Hollow-5吸附体系的Bader电荷"

原子序号吸附前电荷量/e吸附后电荷量/e转移电荷量/e
C1+0.005+0.022+0.017
2-0.079-0.012+0.067
3-0.038-0.040-0.002
4+0.180+0.046-0.134
5+0.042-0.071-0.113
S+0.049+0.049
H1-0.010-0.010
2-0.021-0.021

图5

S-Hollow-5吸附体系的态密度、石墨烯表面的局域态密度和H2S分子的局域态密度"

表3

氮掺杂SW缺陷石墨烯的形成能"

氮掺杂位点Ef /eV
12.94
23.14
33.93
43.75
52.72

图6

H2S分子在氮掺杂SW缺陷石墨烯上的三种吸附体系的稳定构型:(a) S-H体系吸附构型的侧视图和俯视图;(b) S-T体系吸附构型的侧视图和俯视图;(c) H-H体系吸附构型的侧视图和俯视图"

表4

氮掺杂SW缺陷石墨烯吸附H2S分子的吸附能"

吸附构型Eads /eV
S-T-0.60
S-H-0.56
H-H-0.65

图7

H-H吸附体系的电荷密度(a)和差分电荷密度图(b) (等值面值:0.0001)"

表5

H-H吸附体系的Bader电荷"

原子序号吸附前电荷量/e吸附后电荷量/e转移电荷量/e
C1+0.512+0.5120
2+0.339+0.3390
3-0.101-0.105-0.004
4+0.015+0.006-0.009
N-1.283-1.2830
S-0.076-0.076
H1+0.053+0.053
2+0.051+0.051

图8

H-H吸附体系的态密度、石墨烯表面的局域态密度和H2S分子的局域态密度"

1 谢乐, 蒋崇文. 生物滴滤塔去除高浓度H2S废气的模拟研究[J]. 化工学报, 2021, 72(8): 4346-4353.
Xie L, Jiang C W. Simulation study on the removal of high concentration H2S waste gas by biotrickling filter[J]. CIESC Journal, 2021, 72(8): 4346-4353.
2 张敏, 李涛, 陈曙旸, 等. 我国硫化氢中毒的特点与控制对策[J]. 工业卫生与职业病, 2005, 31(1): 12-14.
Zhang M, Li T, Chen S Y, et al. Characteristics and control measures of hydrogen sulfide poisoning in China [J]. Industrial Health and Occupational Diseases, 2005, 31(1): 12-14.
3 杨嫱, 董小刚, 贺雪红, 等. 油田硫化氢腐蚀原因及防护措施[J]. 化工设计通讯, 2019, 45(8): 45-46.
Yang Q, Dong X G, He X H, et al. Causes and protective measures of hydrogen sulfide in oil fields[J]. Chemical Engineering Design Communications, 2019, 45(8): 45-46.
4 杨振宇. 关于硫化氢废气处理新方法研究[J]. 节能与环保, 2019 (7): 75-77.
Yang Z Y. Study on new treatment method of hydrogen sulfide waste gas[J]. Energy Conservation & Environmental Protection,2019 (7): 75-77.
5 Bagreev A, Bandosz T J. H2S adsorption/oxidation on unmodified activated carbons: importance of prehumidification[J]. Carbon, 2001, 39(15): 2303-2311.
6 Adib F, Bagreev A, Bandosz T J. Adsorption/oxidation of hydrogen sulfide on nitrogen-containing activated carbons[J]. Langmuir, 2000, 16(4): 1980-1986.
7 Yang W J, Gao Z Y, Liu X S, et al. Single-atom iron catalyst with single-vacancy graphene-based substrate as a novel catalyst for NO oxidation: a theoretical study[J]. Catalysis Science & Technology, 2018, 8(16): 4159-4168.
8 Tetlow H, Posthuma de Boer J, Ford I J, et al. Growth of epitaxial graphene: theory and experiment[J]. Physics Reports, 2014, 542(3): 195-295.
9 张慧娟. SO2和NO在石墨烯氧化物上吸附氧化的第一性原理研究[D]. 昆明: 昆明理工大学, 2015.
Zhang H J. A first principles study of adsorption and oxidation of SO2 and NO by graphene oxides[D]. Kunming: Kunming University of Science and Technology, 2015.
10 Zhou Q X, Fu Z B, Tang Y J, et al. First-principle study of the transition-metal adatoms on B-doped vacancy-defected graphene[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60: 133-138.
11 Ye X, Ma S G, Jiang X, et al. The adsorption of acidic gaseous pollutants on metal and nonmetallic surface studied by first-principles calculation: a review[J]. Chinese Chemical Letters, 2019, 30(12): 2123-2131.
12 Gao Z Y, Yang W J, Ding X L, et al. Support effects on adsorption and catalytic activation of O2 in single atom iron catalysts with graphene-based substrates[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(10): 7333-7341.
13 Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): b864.
14 Mineva T, Krishnamurty S, Salahub D R, et al. Temperature dependence of the molecular conformations of dilauroyl phosphatidylcholine: a density functional study[J]. International Journal of Quantum Chemistry, 2013, 113(5): 631-636.
15 Sham L J, Kohn W. One-particle properties of an inhomogeneous interacting electron gas[J]. Physical Review, 1966, 145(2): 561.
16 Leenaerts O, Partoens B, Peeters F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study[J]. Physical Review B, 2008, 77(12): 125416.
17 Lazar P, Karlický F, Jurečka P, et al. Adsorption of small organic molecules on graphene[J]. Journal of the American Chemical Society, 2013, 135(16): 6372-6377.
18 Ambrusi R E, Luna C R, Juan A, et al. DFT study of Rh-decorated pristine, B-doped and vacancy defected graphene for hydrogen adsorption[J]. RSC Advances, 2016, 6(87): 83926-83941.
19 Yang W J, Gao Z Y, Liu X S, et al. Directly catalytic reduction of NO without NH3 by single atom iron catalyst: a DFT calculation[J]. Fuel, 2019, 243: 262-270.
20 Zhou Q X, Wang C Y, Fu Z B, et al. Adsorption of formaldehyde molecule on Stone-Wales defected graphene doped with Cr, Mn, and Co: a theoretical study[J]. Computational Materials Science, 2014, 83: 398-402.
21 刘笑涵. 石墨烯气体传感器吸附CO和CO2性能研究[D]. 西安: 西安电子科技大学, 2019.
Liu X H. Study for adsorption of CO and CO2 on graphene gas sensor[D]. Xi'an: Xidian University, 2019.
22 Dai J Y, Yuan J M, Giannozzi P. Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study[J]. Applied Physics Letters, 2009, 95(23): 232105.
23 Jia X T, Zhang H, Zhang Z M, et al. Effect of doping and vacancy defects on the adsorption of CO on graphene[J]. Materials Chemistry and Physics, 2020, 249: 123114.
24 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
25 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review. B, Condensed Matter, 1996, 54(16): 11169-11186.
26 Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review. B, Condensed Matter, 1993, 48(17): 13115-13118.
27 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
28 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758.
29 Goerigk L, Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions[J]. Physical Chemistry Chemical Physics, 2011, 13(14): 6670-6688.
30 Zhang H P, Luo X G, Song H T, et al. DFT study of adsorption and dissociation behavior of H2S on Fe-doped graphene[J]. Applied Surface Science, 2014, 317: 511-516.
[1] 韩威, 詹俊, 石红, 赵东, 蔡少君, 彭湘红, 肖标, 高宇. 氮和硫双掺杂石墨烯量子点的合成及其性能研究[J]. 化工学报, 2021, 72(S1): 530-538.
[2] 李宇明, 刘梓烨, 张启扬, 王雅君, 崔国庆, 姜桂元, 贺德华. 氮掺杂碳材料的制备及其在催化领域中的应用[J]. 化工学报, 2021, 72(8): 3919-3932.
[3] 夏东, 黄朋, 李恒. 水热法制备三维导电石墨烯气凝胶及其焦耳热性能研究[J]. 化工学报, 2021, 72(7): 3839-3848.
[4] 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879.
[5] 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398.
[6] 张芳芳, 韩敏, 赵娟, 凌丽霞, 章日光, 王宝俊. 单空缺石墨烯负载的Pd单原子催化剂上NO还原的密度泛函理论研究[J]. 化工学报, 2021, 72(3): 1382-1391.
[7] 唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652.
[8] 葛冰青, 阴义轩, 王亚溪, 张宏伟, 袁珮. 溶剂对丁腈橡胶溶解、尺寸、结构和催化加氢的影响研究[J]. 化工学报, 2021, 72(1): 543-554.
[9] 奥德, 张皓冰, 吕美婵, 王海涛, 常娜. MOF-199@GO改性PVDF荷电纳滤膜的制备及其性能[J]. 化工学报, 2020, 71(S2): 297-305.
[10] 刘佳鑫, 徐宇, 花儿. 异辛基乙二胺-酰基丙氨酸型质子化离子液体的分子间氢键相互作用[J]. 化工学报, 2020, 71(S1): 15-22.
[11] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[12] 李富恒. 石墨烯纳米片-乙二醇纳米流体光热转化特性研究[J]. 化工学报, 2020, 71(S1): 479-485.
[13] 田隆, 刘婷, 孙克宁. 用于水质净化的氧化石墨烯膜研究进展[J]. 化工学报, 2020, 71(9): 4112-4130.
[14] 冯雪廷, 矫庆泽, 李群, 冯彩虹, 赵芸, 黎汉生, 李海军, 蔡惠群. NiCo2S4/N,S-rGO纳米复合材料的制备和电化学储钠性能[J]. 化工学报, 2020, 71(9): 4314-4324.
[15] 狄玲, 陈放, 付荣荣, 杨辰, 邢杨, 王晓宁. 富电子LMOF对有机农药的检测机理研究[J]. 化工学报, 2020, 71(8): 3830-3838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈晶瑜, 张磊, 陈金春, 陈国强. Ralstonia eutropha PHB4重组菌合成PHA共聚物及性质测定[J]. CIESC Journal, 2007, 15(3): 391 -396 .
[2] 李勇飞, 严旭辉, 江国防, 刘强, 宋建新, 郭灿城. 金属卟啉催化的甲苯氧化及工艺优化[J]. CIESC Journal, 2007, 15(3): 453 -457 .
[3] 魏伟胜, 徐建, 方大伟, 鲍晓军. 甲烷空气部分氧化制合成气喷动床反应器的研究[J]. CIESC Journal, 2003, 11(6): 643 -648 .
[4] 曹维良, 徐金龙, 张敬畅. 超(亚)临界CO2中涂料基体的相行为研究[J]. CIESC Journal, 2003, 11(2): 181 -184 .
[5] 雷志刚, 李成岳, 陈标华. 三正丁胺络合萃取精馏分离醋酸和水[J]. CIESC Journal, 2003, 11(5): 515 -519 .
[6] 张晖, 宋孟浩, 黄金宝. 2-氯酚污染土壤原位臭氧化修复的数学模型[J]. CIESC Journal, 2003, 11(5): 555 -558 .
[7] 尤学一, H.J.Bart. 搅拌萃取塔内单相流动不同雷诺平均湍流模型结果的比较[J]. CIESC Journal, 2003, 11(3): 362 -366 .
[8] 马沛生, 陈明鸣. 对苯二甲酸在几种溶剂中的固液平衡研究[J]. CIESC Journal, 2003, 11(3): 334 -337 .
[9] 杨长生, 马沛生, 唐多强, 靳凤民. 1,2-丙二醇水溶液在不同温度下的超额摩尔体积黏度和热容[J]. CIESC Journal, 2003, 11(2): 175 -180 .
[10] HunYong SHIN, Hwayong KIM, Ki-Pung YOO, ChulSoo LEE, Yoshio IWAI, Yasuhiko ARAI. EOS状态下基于多相流有规栅格理论的水-碳氢化合物两相体系的临界轨迹关系[J]. CIESC Journal, 2002, 10(6): 661 -665 .