化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 475-481.doi: 10.11949/0438-1157.20210295

• 能源和环境工程 • 上一篇    下一篇

竖直壁面上含SO2气体的锅炉烟气的低温冷凝特性

张经伟1(),刘永阳2,刘东2,邵国栋2,李元鲁1,刘舫辰1,杜文静1()   

  1. 1.山东大学能源与动力工程学院,山东 济南 250061
    2.中国电建集团山东电力建设第一工程有限公司,山东 济南 250131
  • 收稿日期:2021-02-26 修回日期:2021-03-05 出版日期:2021-06-20 发布日期:2021-06-20
  • 通讯作者: 杜文静 E-mail:864745648@qq.com;wjdu@sdu.edu.cn
  • 作者简介:张经伟(1995—),男,硕士研究生,864745648@qq.com
  • 基金资助:
    山东省重大科技创新工程项目(2019JZZY010454)

Condensation performance of low temperature boiler flue gas containing SO2 on vertical wall

ZHANG Jingwei1(),LIU Yongyang2,LIU Dong2,SHAO Guodong2,LI Yuanlu1,LIU Fangchen1,DU Wenjing1()   

  1. 1.School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
    2.SEPCO1 Electric Power Construction Co. , Ltd. , Jinan 250131, Shandong, China
  • Received:2021-02-26 Revised:2021-03-05 Published:2021-06-20 Online:2021-06-20
  • Contact: DU Wenjing E-mail:864745648@qq.com;wjdu@sdu.edu.cn

摘要:

为求解竖直壁面上含有SO2气体的锅炉烟气冷凝特性,采用Fluent数值计算软件,根据锅炉烟气酸露点温度的计算公式,通过自定义用户函数,求解了锅炉烟气在竖直平板上的流动和传热的基本变化规律。结果表明,在硫酸蒸气分数为1%~10%,壁温为300~450 K工况下,即使存在少量的SO2,也会和水蒸气生成H2SO4,在壁面上产生冷凝,进而对壁面产生低温腐蚀。当壁面温度一定,在较低硫酸蒸气浓度时,硫酸蒸气浓度的增加将引起硫酸冷凝量的近似线性增长;当硫酸浓度一定时,过冷度的增加将导致硫酸冷凝量的增加,但是当过冷度增大到限定数值时,过冷度的影响较小。

关键词: 冷凝, 腐蚀, 气液两相流, 相变, 对流

Abstract:

In order to solve the condensing performance of boiler flue gas containing SO2 on the vertical wall, based on the Fluent numerical simulation software, according to the calculation formula of the acid dew point temperature of the boiler flue gas, the user-define function(UDF) was used to solve this problem. On the working condition with sulfuric acid vapor fraction of 1%—10% and wall temperature of 300—450 K, numerical simulation results showed that even a small quantity of SO2 could form H2SO4 with water vapor and condense on the wall surface. Therefore the low-temperature corrosion on the wall was produced. Simulation results revealed that when the condensing wall temperature was constant and the volume fraction of sulfuric acid vapor was small, the increase of volume fraction of sulfuric acid vapor caused an approximately linear increase of the condensation of sulfuric acid vapor. When the volume fraction of sulfuric acid vapor was constant, the increase of subcooling generated the increase of the sulfuric acid vapor condensation, but when the degree of subcooling reached a certain value, the effect of the subcooling was negative.

Key words: condensation, erosion, gas-liquid flow, phase change, convection

中图分类号: 

  • TK 124

图1

物理模型"

图2

模型验证"

图3

气液两相分布云图"

图4

速度与温度分布云图"

图5

不同工况下液膜厚度的变化规律"

图6

不同工况下平均传热系数变化规律"

图7

热通量沿流程方向分布"

图8

不同工况下,冷凝速率的变化规律"

1 任小龙. 回转式空气预热器漏风及密封研究[D]. 武汉: 华中科技大学, 2018.
Ren X L. A study on leakage and sealing of rotary air preheater [D]. Wuhan: Huazhong University of Science and Technology, 2018.
2 刘红玲. 空气预热器腐蚀积灰问题探讨[J]. 能源研究与管理, 2019, (3): 33-35.
Liu H L. Discussion on corrosion and ash accumulation of air preheater [J]. Energy Research and Management, 2019, (3): 33-35.
3 边乐永. 电站锅炉回转式空气预热器低温腐蚀研究[J]. 锅炉技术, 2016, 47(4): 26-29.
Bian L Y. Research on the low temperature corrosion of regenerative air heater in power plant boiler [J]. Boiler Technology, 2016, 47(4): 26-29.
4 张鑫. 脱硝空气预热器换热特性的数值模拟研究[D]. 济南: 山东大学, 2019.
Zhang X. Numerical simulation of heat transfer characteristics of denitration air preheater [D]. Jinan: Shandong University, 2019.
5 李德超, 朱骅, 王利民, 等. 回转式空气预热器直接漏风的试验和数值研究[J]. 工程热物理学报, 2020, 41(6): 1325-1331.
Li D C, Zhu H, Wang L M, et al. Experimental and numerical study on direct leakage of rotary air preheater [J]. Journal of Engineering Thermophysics, 2020, 41(6): 1325-1331.
6 闫顺林, 曹保鑫. 回转式空气预热器温度场三维数值模拟[J]. 热力发电, 2020, 49(4): 51-57.
Yan S L, Cao B X. Three-dimensional numerical simulation on temperature field in rotary air preheater [J]. Thermal Power Generation, 2020, 49(4): 51-57.
7 于玉真, 邸海宽, 赵博, 等. 回转式空气预热器蓄热元件流动传热数值模拟[J]. 热力发电, 2020, 49(11): 95-100.
Yu Y Z, Di H K, Zhao B, et al. Numerical simulation of flow and heat transfer of regenerator in rotary air preheater [J]. Thermal Power Generation, 2020, 49(11): 95-100.
8 李健, 柴星, 杨建. 空气预热器换热过程数值模拟[J]. 中国重型装备, 2019, (1): 10-12.
Li J, Chai X, Yang J. Numerical simulation of heat transfer process of air preheater [J]. China Heavy Equipment, 2019, (1): 10-12.
9 张磊. 四分仓回转式空气预热器热力计算模型研究[D]. 北京: 华北电力大学, 2017.
Zhang L. Research on model of thermal calculation for quad-sectional rotory air preheater [D]. Beijing: North China Electric Power University, 2017.
10 贾明生, 凌长明. 烟气酸露点温度的影响因素及其计算方法[J]. 工业锅炉, 2003, (6): 31-35.
Jia M S, Ling C M. Factors of affecting the flue gas acid dew point temperature and its way of calculation [J]. Industrial Boiler, 2003, (6): 31-35.
11 Haase R, Borgmann H W. Precision measurements for the determination of acid dew points [J]. Corrosion, 1963, 15: 47-49.
12 张东洋. 竖直光管管外含空气蒸汽冷凝特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
Zhang D Y. Investigation on condensation of steam in the presence of air outside a vertical smooth tube [D]. Harbin: Harbin Engineering University, 2013.
13 房达. 空气-水蒸气混合气体凝结与对流换热特性的数值模拟[D]. 济南: 山东大学, 2014.
Fang D. Numerical analysis on condensation and convection heat transfer characteristics of gas-vapor mixture [D]. Jinan: Shandong University, 2014.
14 高妍. 纯蒸汽及含不凝气蒸汽垂直管内凝结数值模拟研究[D]. 济南: 山东大学, 2018.
Gao Y. Numerical simulation of pure steam and steam with non-condensable gases condensation in vertical tubes [D]. Jinan: Shandong University, 2018.
15 夏长伦, 郭鑫, 刘琳. 竖直平板上蒸汽层流膜状冷凝换热特性的数值模拟研究[J]. 建筑节能, 2020, 48(5): 65-70.
Xia C L, Guo X, Liu L. Numerical simulation of filmwise condensation heat transfer characteristics of steam laminar flow on vertical plate [J]. Building Energy Efficiency, 2020, 48(5): 65-70.
16 Yi Q J, Tian M C, Fang D. CFD simulation of air-steam condensation on an isothermal vertical plate [J]. International Journal of Heat and Technology, 2015, 33(1): 25-32.
17 Siddique M. The effects of noncondensable gases on steam condensation under forced convection conditions [D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 1992.
18 Li J D. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers [J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 708-721.
19 Kuhn S Z, Schrock V E, Peterson P F. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube [J]. Nuclear Engineering and Design, 1997, 177(1/2/3): 53-69.
20 Yin Z, Guo Y L, Sunden B, et al. Numerical simulation of laminar film condensation in a horizontal minitube with and without non-condensable gas by the VOF method [J]. Numerical Heat Transfer, Part A: Applications, 2015, 68(9): 958-977.
21 刘泉. 纯蒸气及含不凝气蒸气冷凝的数值研究[D]. 合肥: 中国科学技术大学, 2015.
Liu Q. Numerical investigation on condensation with and without non-condensable gas [D]. Hefei: University of Science and Technology of China, 2015.
22 白杨. 含不凝性气体氮蒸气冷凝传热数值模拟与可视化试验研究[D]. 杭州: 浙江大学, 2017.
Bai Y. Numerical simulation and visualization investigation on the condensation of nitrogen with noncondensable gas [D]. Hangzhou: Zhejiang University, 2017.
23 张莉莉, 张冠敏, 毛文龙, 等. 含氮气的甲烷蒸气冷凝过程的数值模拟[J]. 高校化学工程学报, 2019, 33(2): 329-337.
Zhang L L, Zhang G M, Mao W L, et al. Numerical simulation of methane condensation in the presence of nitrogen [J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(2): 329-337.
24 Wu X M, Li T, Li Q Y, et al. Approximate equations for film condensation in the presence of non-condensable gases [J]. International Communications in Heat and Mass Transfer, 2017, 85: 124-130.
25 Shen Q, Sun D M, Su S Y, et al. Development of heat and mass transfer model for condensation [J]. International Communications in Heat and Mass Transfer, 2017, 84: 35-40.
26 周梦, 虞斌, 曹宇. 相变换热器中蒸汽冷凝数值研究[J]. 化工机械, 2018, 45(6): 730-737.
Zhou M, Yu B, Cao Y. Numerical study of steam condensation in phase change heat exchanger [J]. Chemical Engineering & Machinery, 2018, 45(6): 730-737.
27 Zschaeck G, Frank T, Burns A D. CFD modelling and validation of wall condensation in the presence of non-condensable gases [J]. Nuclear Engineering and Design, 2014, 279: 137-146.
[1] 林恩承, 王文, 匡以武, 石玉美, 耑锐, 孙礼杰. 低温输运管道预冷过程的气液两相数值分析[J]. 化工学报, 2021, 72(S1): 153-160.
[2] 张毅, 张冠敏, 刘磊, 梁凯, 屈晓航, 田茂诚. 多排平直翅片管换热器表面气液降膜流动特性的三维数值模拟[J]. 化工学报, 2021, 72(S1): 278-294.
[3] 黄锟腾, 陈健勇, 陈颖, 罗向龙, 梁颖宗. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
[4] 王玲玥, 朱进容, 王从乐, 吕辉, 成纯富, 张金业. 圆管束中导流器对其自然对流换热的影响[J]. 化工学报, 2021, 72(S1): 310-317.
[5] 何起帆, 吴闽强, 李廷贤, 王如竹. 正十八烷/OBC/EG复合定型相变材料制备及热物性[J]. 化工学报, 2021, 72(S1): 539-545.
[6] 燕子腾, 吴国明, 庄大伟, 丁国良, 曹法立, 孟建军. 用于微通道换热器的循环流道分流器的设计方法与应用效果[J]. 化工学报, 2021, 72(S1): 77-83.
[7] 张海, 徐英, 张涛, 孙涔崴, 魏传顺, 戴志向. 丝网传感器的气液两相流可视化测量特性研究[J]. 化工学报, 2021, 72(9): 4573-4583.
[8] 张浩, 王姣, 马挺, 李馨怡, 刘军, 王秋旺. 超重条件下泡沫石墨-石蜡相变传热实验研究[J]. 化工学报, 2021, 72(9): 4523-4530.
[9] 赵兰萍, 郭本涛, 杨志刚. 车用热泵内部冷凝器结构对性能的影响[J]. 化工学报, 2021, 72(9): 4616-4628.
[10] 颜建国, 郑书闽, 郭鹏程, 张博, 毛振凯. 基于GA-BP神经网络的超临界CO2传热特性预测研究[J]. 化工学报, 2021, 72(9): 4649-4657.
[11] 林伟翔, 苏港川, 陈强, 文键, 王斯民. 基于超声技术的沉浸式换热器强化传热研究[J]. 化工学报, 2021, 72(8): 4055-4063.
[12] 曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120.
[13] 刘庭江, 王静娴, 于洋, 赵一鸣, 胡大鹏. 壁面脉动传热对气波制冷性能影响研究[J]. 化工学报, 2021, 72(8): 4073-4080.
[14] 赵雨萌, 王亦飞, 彭昕, 位宗瑶, 于广锁, 王辅臣. 洗涤冷却室垂直环隙空间内液相流动结构的研究[J]. 化工学报, 2021, 72(8): 4039-4046.
[15] 林肯, 许肖永, 李强, 胡定华. 石蜡-膨胀石墨复合相变材料热导率研究[J]. 化工学报, 2021, 72(8): 4425-4432.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 余钊圣, 邵雪明, R.Tanner. 二维环形Couette设备中剪切引起的二维圆形固粒迁移的动态数值模拟[J]. CIESC Journal, 2007, 15(3): 333 -338 .
[2] 蒋国强, 朱德权, 昝佳, 丁富新. 电致孔经皮给药:表面活性剂对孔道存在时间和药物传输的影响[J]. CIESC Journal, 2007, 15(3): 397 -402 .
[3] 刘先桥, 官月平, 邢建民, 马志亚, 刘会洲. 带环氧基的超顺磁性高分子微球的制备及其性能表征[J]. CIESC Journal, 2003, 11(6): 731 -735 .
[4] 闻建平, 王长. 吡虫啉合成的工艺优化和工业放大[J]. CIESC Journal, 2003, 11(5): 604 -607 .
[5] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[6] 张旭, 杨燕华, 张成芳, 王军. MDEA与哌嗪、二乙醇胺混合溶液吸收二氧化碳速率研究[J]. CIESC Journal, 2003, 11(4): 408 -413 .
[7] 王延敏, 姚平经. 利用人工神经网络和遗传算法对热偶精馏过程进行模拟优化[J]. CIESC Journal, 2003, 11(3): 307 -311 .
[8] 任杰, 刘艳, 唐小真. 聚合物基有机-无机纳米复合材料的制备、性能及应用[J]. CIESC Journal, 2003, 11(3): 326 -333 .
[9] 唐松涛, 李定凯, 吕子安, 沈幼庭. 伴有生物质热解的流化床中的混沌传递现象[J]. CIESC Journal, 2003, 11(3): 358 -361 .
[10] 张林, 陈欢林, 周志军, 钱锦文, 高从堦, 潘祖仁. 用于脱除C5及MTBE中甲醇的渗透汽化膜研究[J]. CIESC Journal, 2003, 11(2): 156 -161 .