化工学报 ›› 2019, Vol. 70 ›› Issue (1): 379-387.DOI: 10.11949/j.issn.0438-1157.20180678
收稿日期:
2018-06-21
修回日期:
2018-10-05
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
陈利平
作者简介:
朱益(1994—),女,硕士研究生,<email>1579794844@qq.com</email>|陈利平(1981—),女,博士,副教授,<email>clp2005@hotmail.com</email>
基金资助:
Yi ZHU(),Hao WANG,Liping CHEN(
),Zichao GUO,Zhongqi HE,Wanghua CHEN
Received:
2018-06-21
Revised:
2018-10-05
Online:
2019-01-05
Published:
2019-01-05
Contact:
Liping CHEN
摘要:
最大反应速率到达时间(TMRad)是化工工艺热风险评估中一个十分重要的参数。一般计算TMRad的方法是基于N级模型的分析。但对于复杂的反应过程统一采用N级模型分析计算可能会引起较大偏差甚至得到错误的评估。因此,提出运用基于反应类型的数值计算方法进行TMRad和TD24的评估,通过分别代表N级反应和自催化反应的20% DTBP甲苯溶液和CHP的ARC测试分析表明:对于N级反应,该方法能可靠地用于TMRad和TD24的求取;而对于自催化反应,尽管拟合效果很好,原有方法计算偏差很大,原因是不同模型下动力学参数不同,还进行偏差大小分析。由此可知该数值计算方法有广泛的适用性,对于放热曲线,需在了解其反应类型的基础上利用该方法进行TMRad和TD24的评估,由此评估的结果更为可靠准确。
中图分类号:
朱益, 王浩, 陈利平, 郭子超, 何中其, 陈网桦. 基于数值计算方法计算最大反应速率到达时间[J]. 化工学报, 2019, 70(1): 379-387.
Yi ZHU, Hao WANG, Liping CHEN, Zichao GUO, Zhongqi HE, Wanghua CHEN. Calculate time to maximum rate under adiabatic condition by numerical calculation method[J]. CIESC Journal, 2019, 70(1): 379-387.
Work | ms /g | Cp,s/(J·g-1·K-1) | mb /g | Cp,b/(J·g-1·K-1) | φ | Ton /℃ | Tf /℃ |
---|---|---|---|---|---|---|---|
this work | 4.95 | 2 | 15.32 | 0.42 | 1.65 | 115.3 | 181.71 |
Kossoy et al[ | NA① | NA① | NA① | NA① | 1.665 | 125.8 | NA① |
表1 20%DTBP甲苯溶液ARC测试信息及相关文献测试信息
Table 1 ARC test information for 20% DTBP toluene solution of this work and other related works
Work | ms /g | Cp,s/(J·g-1·K-1) | mb /g | Cp,b/(J·g-1·K-1) | φ | Ton /℃ | Tf /℃ |
---|---|---|---|---|---|---|---|
this work | 4.95 | 2 | 15.32 | 0.42 | 1.65 | 115.3 | 181.71 |
Kossoy et al[ | NA① | NA① | NA① | NA① | 1.665 | 125.8 | NA① |
Work | A/s-1 | E/(kJ·mol-1) | n | ΔTAD /K |
---|---|---|---|---|
this work | 9.12×1016 | 165.37 | 1.05 | 66.41 |
Kossoy et al[ | 3.67×1015 | 155.38 | 0.98 | NA① |
表2 本文获得的动力学参数与相关文献结果对比(N级)
Table 2 Kinetic parameters of this work and other related works (N-order)
Work | A/s-1 | E/(kJ·mol-1) | n | ΔTAD /K |
---|---|---|---|---|
this work | 9.12×1016 | 165.37 | 1.05 | 66.41 |
Kossoy et al[ | 3.67×1015 | 155.38 | 0.98 | NA① |
ms /g | Cp,s/(J·g-1·K-1) | mb/g | Cp,b/(J·g-1·K-1) | φ | Ton /℃ | Tf /℃ |
---|---|---|---|---|---|---|
0.22 | 2 | 14.67 | 0.42 | 14.75 | 120.64 | 166.80 |
表3 CHP ARC测试信息
Table 3 ARC test information for CHP of this work
ms /g | Cp,s/(J·g-1·K-1) | mb/g | Cp,b/(J·g-1·K-1) | φ | Ton /℃ | Tf /℃ |
---|---|---|---|---|---|---|
0.22 | 2 | 14.67 | 0.42 | 14.75 | 120.64 | 166.80 |
calculate model | A /s-1 | E /(kJ·mol-1) | n | ΔTAD /K |
---|---|---|---|---|
BP model | 2.66×1012(A1) 6.84×1011(A2) | 128.60(E1) 116.38(E2) | 0.40(n1) 1.42(n2) 1.06(n3) | 46.11 |
N-order model | 6.29×1023 | 213.94 | 1.33 | 46.11 |
表4 本文获得的动力学参数结果(N级和BP模型)
Table 4 Kinetic parameters of this work (N-order and BP model)
calculate model | A /s-1 | E /(kJ·mol-1) | n | ΔTAD /K |
---|---|---|---|---|
BP model | 2.66×1012(A1) 6.84×1011(A2) | 128.60(E1) 116.38(E2) | 0.40(n1) 1.42(n2) 1.06(n3) | 46.11 |
N-order model | 6.29×1023 | 213.94 | 1.33 | 46.11 |
1 | EtchellsJ C. Why reactions run away[J]. Organic Process Research & Development, 1997, 1(6): 435-437. |
2 | BarbasR, BotijaM, CampsH, et al. Safety evaluation of an unexpected incident with a nitro compound[J]. Organic Process Research & Development, 2007, 11(6): 1131-1134. |
3 | ShimizeS, OsatoH, ImamuraY, et al. Safety evaluation of sodium borohydride in dimethylacetamide[J]. Organic Process Research & Development, 2010, 14(6): 1518-1520. |
4 | StoesselF. Thermal Safety of Chemical Process: Risk Assessment and Process Design[M]. Weinheim: Wiley-VCH, 2008: 55-56. |
5 | 彭敏君, 路贵斌, 陈网桦, 等. 苯胺溶剂中偶氮二异丁腈热分解特性及动力学[J]. 物理化学学报, 2013, 29(10): 2095-2100. |
PengM J, LuG B, ChenW H, et al. Thermal decomposition characteristic and kinetics of AIBN in aniline solvent[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2095-2100. | |
6 | 周奕杉, 陈利平, 陈网桦, 等. 甲苯一段硝化产物TD24的获取[J]. 化工学报, 2014, 65(11): 4383-4391. |
ZhouY S, ChenL P, ChenW H, et al. TD24 determination for mono-nitration products of toluene[J]. CIESC Journal, 2014, 65(11): 4383-4391. | |
7 | SemenoffN. Zur theorie des verbrennung sprozesses[J]. Zeitschrift für Physik, 1928, 48(7): 571-582. |
8 | TownsendD I, TouJ C. Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37(1): 1-30. |
9 | TouJ C, WhitingL F. The thermokinetic performance of an accelerating rate calorimeter[J]. Thermochimica Acta, 1981, 48(1): 21-42. |
10 | Frank-KamenetskiiD A, SemenoffN, WilhelmR H. Diffusion and Heat Exchange in Chemical Kinetics[M]. Princeton: Princeton University Press, 1955: 145-200. |
11 | KossoyA, SinghJ, KoludarovaE Y. Mathematical methods for application of experimental adiabatic data – an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 88-100. |
12 | GuoZ C, ChenL P, ChenW H. Estimation of kinetic parameters from adiabatic calorimetric data by a hybrid particle swarm optimization method[J]. Chemical Engineering Research & Design, 2017, 122: 273-279. |
13 | DormandJ R, PrinceP J. A family of embedded Runge-Kutta formulae[J]. J. Computational & Applied Mathematics, 1980, 6(1): 19-26. |
14 | 郭菊喜. 四阶Runge-Kutta格式及五阶Runge-Kutta格式的证明[J]. 乐山师范学院学报, 2016, 31(4): 8-15. |
Guo J X, The proof of fourth-order Runge-Kutta and fifth-order Runge-Kutta method[J]. Journal of Leshan Normal University, 2016, 31(4): 8-15. | |
15 | RoduitB, HartmannM, FollyP, et al. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579(5): 31-39. |
16 | KimuraA, OtsukaT. Performance evaluation of differential accelerating rate calorimeter for the thermal runaway reaction of di-tert-butyl peroxide[J]. Journal of Thermal Analysis & Calorimetry, 2013, 113(3): 1585-1591. |
17 | AndY I, SurianarayananM. Comprehensive kinetic model for adiabatic decomposition of di-tert-butyl peroxide using batchCAD[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 2987-2995. |
18 | HoT C, DuhY S, ChenJ R. Case studies of incidents in runaway reactions and emergency relief[J]. Process Safety Progress, 1998, 17(4): 259-262. |
19 | WuK W, HouH Y, ShuC M. Thermal phenomena studies for dicumyl peroxide at various concentrations by DSC[J]. Journal of Thermal Analysis & Calorimetry, 2006, 83(1): 41-44. |
20 | DuhY S, KaoC S, LeeC, et al. Runaway hazard assessment of cumene hydroperoxide from the cumene oxidation process[J]. Process Safety & Environmental Protection, 1997, 75(2): 73-80. |
21 | WuS H, WangY W, WuT C, et al. Evaluation of thermal hazards for dicumyl peroxide by DSC and VSP2[J]. Journal of Thermal Analysis & Calorimetry, 2008, 93(1): 189-194. |
22 | ChenK Y, WuS H, WangY W, et al. Runaway reaction and thermal hazards simulation of cumene hydroperoxide by DSC[J]. Journal of Loss Prevention in the Process Industries, 2008, 21(1): 101-109. |
23 | ChenJ R, ChengS Y, YuanM H, et al. Hierarchical kinetic simulation for autocatalytic decomposition of cumene hydroperoxide at low temperatures[J]. Journal of Thermal Analysis & Calorimetry, 2009, 96(3): 751-758. |
24 | 黄艳军, 谢传欣, 曹居正, 等. 过氧化氢异丙苯热稳定性与热安全性研究[J]. 中国安全科学学报, 2011, 21(6): 116-122. |
HuangY J, XieC X, CaoJ Z, et al. Study on thermal stability and thermal safety of cumene hydroperoxide[J]. China Safety Science Journal, 2011, 21(6): 116-122. | |
25 | DuhY S, KaoC S, HwangH H, et al. Thermal decomposition kinetics of cumene hydroperoxide[J]. Process Safety & Environmental Protection, 1998, 76(4): 271-276. |
26 | WilberforceJ K. Comparison of methods of determination of adiabatic times to maximum rate of exothermic reactions[J]. Journal of Thermal Analysis, 1982, 25(2): 593-596. |
27 | KossoyA, MisharevP, BelochvostovV. Peculiarities of calorimetric data processing for kinetics evaluation in reaction hazard assessment[C]// Calorimetry Conference. 1998. |
28 | GaoH, ChenL, ChenW, et al. Thermal stability evaluation of β-artemether by DSC and ARC[J]. Thermochimica Acta, 2013, 569: 134-138. |
29 | 胡荣祖, 史启祯. 热分析动力学[M]. 北京: 科学出版社, 2001: 236-257. |
HuR Z, ShiQ Z. Thermal Analysis Kinetics[M]. Beijing: Science Press, 2001: 236-257. | |
30 | 杨庭, 陈利平, 陈网桦, 等. 分解反应自催化性质快速鉴别的实验方法[J]. 物理化学学报, 2014, 30(7): 1215-1222. |
YangT, ChenL P, ChenW H, et al. Experimental method on rapid identification of autocatalysis in decomposition reactions[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1215-1222. | |
31 | 陈网桦, 陈利平, 杨庭, 等. 自催化鉴别方法在物质热稳定性分析中的应用[C]// 中国化学会学术年会, 2014. |
ChenW H, ChenL P, YangT, et al. Application of identified method for autocatalytic decomposition on thermal stability of material[C]// Chinese Chemical Society, 2014. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[7] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[8] | 李珍宝, 李超, 王虎, 王绍瑞, 黎泉. MPP抑制铝镁合金粉尘爆炸微观机理研究[J]. 化工学报, 2023, 74(8): 3608-3614. |
[9] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[12] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[13] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[14] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[15] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 738
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1080
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||