化工学报 ›› 2023, Vol. 74 ›› Issue (1): 60-73.DOI: 10.11949/0438-1157.20221056
收稿日期:
2022-07-27
修回日期:
2022-10-20
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
魏进家
作者简介:
魏进家(1971—),男,博士,教授,jjwei@xjtu.edu.cn
基金资助:
Jinjia WEI1,2(), Lei LIU1, Xiaoping YANG1
Received:
2022-07-27
Revised:
2022-10-20
Online:
2023-01-05
Published:
2023-03-20
Contact:
Jinjia WEI
摘要:
环路热管是一种高效的两相传热装置,在高热流电子器件散热领域极具前景。介绍了平板式环路热管目前存在的三大瓶颈问题,即极限热通量不能满足某些大功率器件的需求、温度波动问题和低功率下启动失败及温度过冲问题,分析了这些问题产生的原因,并总结了近十年来研究人员提出的解决方法,包括毛细芯性能改良、工质优化和环路热管结构改进等。随后列举了已取得实际应用的环路热管结构及其使用场合。最后对平板式环路热管的研究现状进行了总结,并提出了进一步的研究方向,为提高环路热管综合性能和实现商业化应用提供参考。
中图分类号:
魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73.
Jinjia WEI, Lei LIU, Xiaoping YANG. Research progress of loop heat pipes for heat dissipation of high-heat-flux electronic devices[J]. CIESC Journal, 2023, 74(1): 60-73.
工质 | 工质使用温度范围/℃ | 毛细芯材质 | 热管外壳材质 | 热负荷/W | 热通量/(W·cm-2) | 文献 |
---|---|---|---|---|---|---|
去离子水 | 20~200 | 黄铜 | 紫铜,不锈钢,聚碳酸酯 | 50~550 | 10.3~113.6 | [ |
紫铜 | 紫铜 | 20~380 | 5~95 | [ | ||
紫铜 | 紫铜,聚碳酸酯 | 25~550 | 4~88 | [ | ||
紫铜 | 紫铜,铝合金 | 50~750 | 5.6~83.3 | [ | ||
紫铜 | 紫铜 | 20~600 | 2.2~66.7 | [ | ||
紫铜 | 紫铜 | 20~900 | 1.25~56.30 | [ | ||
不锈钢 | 紫铜,不锈钢 | 50~550 | 4.4~48.6 | [ | ||
紫铜 | 紫铜 | 50~550 | 2~22 | [ | ||
氨 | -60~100 | 紫铜,不锈钢 | 5~300 | 0.4~23.9 | [ | |
镍 | 不锈钢 | 6~330 | 0.4~20.6 | [ | ||
不锈钢 | 2.5~180.0 | 0.2~10.8 | [ | |||
甲醇 | 0~130 | 不锈钢 | 紫铜,黄铜 | 30~190 | 6.2~39.3 | [ |
紫铜 | 紫铜 | 20~380 | 1.25~23.80 | [ | ||
不锈钢 | 黄铜 | 20~240 | 1.6~19.1 | [ | ||
聚丙烯 | 不锈钢 | 3~130 | 0.2~10.6 | [ | ||
丙酮 | 0~120 | 不锈钢 | 紫铜,不锈钢 | 60~260 | 4.2~18.2 | [ |
不锈钢 | 不锈钢,铝 | 50~280 | 3.5~19.6 | [ | ||
乙醇 | 0~130 | 紫铜 | 紫铜 | 20~320 | 1.25~20.00 | [ |
铜纤维 | 紫铜,铝合金 | 30~200 | 0.6~4.0 | [ |
表1 常见工质在平板式环路热管中的应用
Table 1 Application of common working fluids in loop heat pipes with flat evaporator
工质 | 工质使用温度范围/℃ | 毛细芯材质 | 热管外壳材质 | 热负荷/W | 热通量/(W·cm-2) | 文献 |
---|---|---|---|---|---|---|
去离子水 | 20~200 | 黄铜 | 紫铜,不锈钢,聚碳酸酯 | 50~550 | 10.3~113.6 | [ |
紫铜 | 紫铜 | 20~380 | 5~95 | [ | ||
紫铜 | 紫铜,聚碳酸酯 | 25~550 | 4~88 | [ | ||
紫铜 | 紫铜,铝合金 | 50~750 | 5.6~83.3 | [ | ||
紫铜 | 紫铜 | 20~600 | 2.2~66.7 | [ | ||
紫铜 | 紫铜 | 20~900 | 1.25~56.30 | [ | ||
不锈钢 | 紫铜,不锈钢 | 50~550 | 4.4~48.6 | [ | ||
紫铜 | 紫铜 | 50~550 | 2~22 | [ | ||
氨 | -60~100 | 紫铜,不锈钢 | 5~300 | 0.4~23.9 | [ | |
镍 | 不锈钢 | 6~330 | 0.4~20.6 | [ | ||
不锈钢 | 2.5~180.0 | 0.2~10.8 | [ | |||
甲醇 | 0~130 | 不锈钢 | 紫铜,黄铜 | 30~190 | 6.2~39.3 | [ |
紫铜 | 紫铜 | 20~380 | 1.25~23.80 | [ | ||
不锈钢 | 黄铜 | 20~240 | 1.6~19.1 | [ | ||
聚丙烯 | 不锈钢 | 3~130 | 0.2~10.6 | [ | ||
丙酮 | 0~120 | 不锈钢 | 紫铜,不锈钢 | 60~260 | 4.2~18.2 | [ |
不锈钢 | 不锈钢,铝 | 50~280 | 3.5~19.6 | [ | ||
乙醇 | 0~130 | 紫铜 | 紫铜 | 20~320 | 1.25~20.00 | [ |
铜纤维 | 紫铜,铝合金 | 30~200 | 0.6~4.0 | [ |
1 | Wang X Y, Liu Y, Tian T, et al. Directly air-cooled compact looped heat pipe module for high power servers with extremely low power usage effectiveness[J]. Applied Energy, 2022, 319: 119279. |
2 | Maydanik Y, Chernysheva M, Vershinin S. High-capacity loop heat pipe with flat evaporator for efficient cooling systems[J]. Journal of Thermophysics and Heat Transfer, 2020, 34(3): 465-475. |
3 | Xue Z H, Qu W, Xie M H. High performance loop heat pipe with flat evaporator for energy-saving cooling systems of supercomputers[J]. Journal of Heat Transfer, 2020, 142(3): 1-7. |
4 | Su Q, Chang S N, Zhao Y Y, et al. A review of loop heat pipes for aircraft anti-icing applications[J]. Applied Thermal Engineering, 2018, 130: 528-540. |
5 | Su Q, Chang S N, Yang C. Loop heat pipe-based solar thermal façade water heating system: a review of performance evaluation and enhancement[J]. Solar Energy, 2021, 226: 319-347. |
6 | Yang Z H, Zhang Y F, Bai L Z, et al. Experimental study on the thermal performance of an ammonia loop heat pipe using a rectangular evaporator with longitudinal replenishment[J]. Applied Thermal Engineering, 2022, 207: 118199. |
7 | 田亚玲, 张海南, 徐洪波, 等. 紧凑型平板环路热管实验研究[J]. 化工学报, 2021, 72(6): 3288-3295. |
Tian Y L, Zhang H N, Xu H B, et al. Experimental study on compact plate loop heat pipe[J]. CIESC Journal, 2021, 72(6): 3288-3295. | |
8 | Maydanik Y F, Chernysheva M A, Pastukhov V G. Review: loop heat pipes with flat evaporators[J]. Applied Thermal Engineering, 2014, 67(1/2): 294-307. |
9 | 郭浩, 纪献兵, 周儒鸿, 等. 超亲水毛细芯环路热管启动及热性能分析[J]. 化工进展, 2020, 39(4): 1227-1234. |
Guo H, Ji X B, Zhou R H, et al. Analysis of start-up and thermal performance of super-hydrophilic porous wick loop heat pipe[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1227-1234. | |
10 | Wang S F, Zhang W B, Zhang X F, et al. Study on start-up characteristics of loop heat pipe under low-power[J]. International Journal of Heat and Mass Transfer, 2011, 54(4): 1002-1007. |
11 | 熊康宁, 吴伟, 汪双凤. 平板形蒸发器环路热管的研究进展[J]. 化工进展, 2021, 40(10): 5388-5402. |
Xiong K N, Wu W, Wang S F. Research and development of loop heat pipe with flat evaporator[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5388-5402. | |
12 | Wang X L, Yang J X, Wen Q W, et al. Visualization study of a flat confined loop heat pipe for electronic devices cooling[J]. Applied Energy, 2022, 322: 119451. |
13 | Li J, Zheng W H, Hong F J. Three-dimensional lattice Boltzmann investigation on pore scale liquid-vapor distribution patterns and heat transfer performance of a loop heat pipe heterogeneous porous wick evaporator[J]. International Communications in Heat and Mass Transfer, 2021, 128: 105639. |
14 | Anand A R, Ambirajan A, Dutta P. Investigations on vapour blanket formation inside capillary wick of loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119685. |
15 | Wang H J, Xu J Y, Hong F J. Developing of an open-source toolbox for liquid-vapor phase change in the porous wick of a LHP evaporator based on OpenFOAM[J]. Case Studies in Thermal Engineering, 2022, 35: 102068. |
16 | Zhao R Z, Zhang Z K, Zhao S C, et al. Experimental study of flat-disk loop heat pipe with R1233zd(E) for cooling terrestrial electronics[J]. Applied Thermal Engineering, 2021, 197: 117385. |
17 | 张浩, 张子康, 刘志春, 等. 氨工质平板式环路热管的传热性能研究[J]. 节能技术, 2021, 39(1): 3-8. |
Zhang H, Zhang Z K, Liu Z C, et al. A study on thermal performance of an ammonia loop heat pipe with a flat disk-shaped evaporator[J]. Energy Conservation Technology, 2021, 39(1): 3-8. | |
18 | 郑晓欢, 王野, 李红传, 等. 微纳尺度毛细芯吸液特性[J]. 粉末冶金材料科学与工程, 2016, 21(3): 488-495. |
Zheng X H, Wang Y, Li H C, et al. Characterization of capillary performance of micro-nano scale wicks[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(3): 488-495. | |
19 | 何达, 汪琳, 刘如铁, 等. 烧结铜基多孔毛细芯的孔隙特征及性能[J]. 粉末冶金材料科学与工程, 2018, 23(4): 389-397. |
He D, Wang L, Liu R T, et al. Pore characteristic and performance of sintered copper-based porous wicks[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(4): 389-397. | |
20 | Cao Y W, Wu D T, Guo C S, et al. Fabrication and capillary performance of bi-porous Ti3AlC2 wicks with controllable pore size proportion using dissolvable pore formers[J]. Journal of Materials Research and Technology, 2021, 15: 4370-4380. |
21 | 曲燕, 张坤峰. 环路热管双孔径分布毛细结构的研究进展[J]. 粉末冶金工业, 2014, 24(3): 48-55. |
Qu Y, Zhang K F. Review of bi-porous wick structure for loop heat pipe[J]. Powder Metallurgy Industry, 2014, 24(3): 48-55. | |
22 | Yeh C C, Chen C N, Chen Y M. Heat transfer analysis of a loop heat pipe with biporous wicks[J]. International Journal of Heat and Mass Transfer, 2009, 52(19/20): 4426-4434. |
23 | Xu J Y, Wang D C, Hu Z H, et al. Effect of the working fluid transportation in the copper composite wick on the evaporation efficiency of a flat loop heat pipe[J]. Applied Thermal Engineering, 2020, 178: 115515. |
24 | 柳洋, 陈岩, 杨博文, 等. 孔径递变复合毛细芯的蒸发特性研究[J]. 工程热物理学报, 2019, 40(7): 1627-1631. |
Liu Y, Chen Y, Yang B W, et al. Investigation on evaporation for composite wicks with changing pore size[J]. Journal of Engineering Thermophysics, 2019, 40(7): 1627-1631. | |
25 | Guo H, Ji X B, Xu J L. Enhancement of loop heat pipe heat transfer performance with superhydrophilic porous wick[J]. International Journal of Thermal Sciences, 2020, 156: 106466. |
26 | Li H, Fu S J, Li G F, et al. Effect of fabrication parameters on capillary pumping performance of multi-scale composite porous wicks for loop heat pipe[J]. Applied Thermal Engineering, 2018, 143: 621-629. |
27 | Liu J Y, Zhang Y X, Feng C, et al. Study of copper chemical-plating modified polyacrylonitrile-based carbon fiber wick applied to compact loop heat pipe[J]. Experimental Thermal and Fluid Science, 2019, 100: 104-113. |
28 | Hu Z H, Wang D C, Xu J Y, et al. Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120258. |
29 | Solomon A B, Mahto A K, Joy R C, et al. Application of bio-wick in compact loop heat pipe[J]. Applied Thermal Engineering, 2020, 169: 114927. |
30 | Phan N, Watanabe N, Saito Y, et al. Flat-evaporator-type loop heat pipe with hydrophilic polytetrafluoroethylene porous membranes[J]. Physics of Fluids, 2020, 32(4): 047108. |
31 | Xiong K N, Meng L K, Wang S F. Design, fabrication, investigation and analysis of a novel flat evaporator loop heat pipe for cooling high heat flux server chips[J]. Applied Thermal Engineering, 2022, 201: 117775. |
32 | Ji X B, Wang Y, Xu J L, et al. Experimental study of heat transfer and start-up of loop heat pipe with multiscale porous wicks[J]. Applied Thermal Engineering, 2017, 117: 782-798. |
33 | Odagiri K, Nagano H. Investigation on liquid-vapor interface behavior in capillary evaporator for high heat flux loop heat pipe[J]. International Journal of Thermal Sciences, 2019, 140: 530-538. |
34 | Liu L, Yuan B, Cui C Y, et al. Investigation of a loop heat pipe to achieve high heat flux by incorporating flow boiling[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123173. |
35 | Tharayil T, Asirvatham L G, Ravindran V, et al. Effect of filling ratio on the performance of a novel miniature loop heat pipe having different diameter transport lines[J]. Applied Thermal Engineering, 2016, 106: 588-600. |
36 | Tharayil T, Asirvatham L G, Ravindran V, et al. Thermal performance of miniature loop heat pipe with graphene-water nanofluid[J]. International Journal of Heat and Mass Transfer, 2016, 93: 957-968. |
37 | Zhou G H, Li J. Two-phase flow characteristics of a high performance loop heat pipe with flat evaporator under gravity[J]. International Journal of Heat and Mass Transfer, 2018, 117: 1063-1074. |
38 | Chernysheva M A, Yushakova S I, Maydanik Y F. Effect of external factors on the operating characteristics of a copper-water loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2015, 81: 297-304. |
39 | Liu L, Yang X P, Yuan B, et al. Experimental study of a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 164: 120518. |
40 | Maydanik Y F, Vershinin S V, Chernysheva M A. Experimental study of an ammonia loop heat pipe with a flat disk-shaped evaporator using a bimetal wall[J]. Applied Thermal Engineering, 2017, 126: 643-652. |
41 | Zhang H X, Li G G, Chen L, et al. Development of flat-plate loop heat pipes for spacecraft thermal control[J]. Microgravity Science and Technology, 2019, 31(4): 435-443. |
42 | Zhang Z K, Zhang H, Ma Z Y, et al. Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator[J]. Applied Thermal Engineering, 2020, 173: 115183. |
43 | Liu L, Yang X P, Yuan B, et al. Experimental study on thermal performance of a loop heat pipe with a bypass line[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118996. |
44 | Wang D D, Liu Z C, Shen J, et al. Experimental study of the loop heat pipe with a flat disk-shaped evaporator[J]. Experimental Thermal and Fluid Science, 2014, 57: 157-164. |
45 | Baek Y, Jung E G. Heat transfer performance of loop heat pipe for space vehicle thermal control under bypass line operation[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123064. |
46 | Odagiri K, Nagano H. Heat transfer characteristics of flat evaporator loop heat pipe under high heat flux condition with different orientations[J]. Applied Thermal Engineering, 2019, 153: 828-836. |
47 | Ling W S, Zhou W, Liu R L, et al. Thermal performance of loop heat pipe with porous copper fiber sintered sheet as wick structure[J]. Applied Thermal Engineering, 2016, 108: 251-260. |
48 | Wu S C, Yen S H, Lo W C, et al. Study of nickel wick structure applied to loop heat pipe with flat evaporator[J]. Key Engineering Materials, 2016, 723: 282-287. |
49 | 马钲沅. 自湿润流体环路热管传热特性实验研究[D]. 武汉: 华中科技大学, 2020. |
Ma Z Y. Experimental investigation of heat performance for loop heat pipe with self-rewetting fluid[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
50 | Boubaker R, Harmand S, Ouenzerfi S. Effect of self-rewetting fluids on the liquid/vapor phase change in a porous media of two-phase heat transfer devices[J]. International Journal of Heat and Mass Transfer, 2019, 136: 655-663. |
51 | Wan Z P, Deng J, Li B, et al. Thermal performance of a miniature loop heat pipe using water-copper nanofluid[J]. Applied Thermal Engineering, 2015, 78: 712-719. |
52 | Stephen E N, Asirvatham L G, Kandasamy R, et al. Heat transfer performance of a compact loop heat pipe with alumina and silver nanofluid[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(1): 211-222. |
53 | Jose J, Baby R. Enhancement of the thermal performance of a loop heat pipe using silica-water nanofluid[J]. Journal of Physics: Conference Series, 2019, 1355(1): 012010. |
54 | 石育佳, 王秀峰, 王彦青, 等. CPU液体冷却器件及冷却液材料研究进展[J]. 材料导报, 2012, 26(21): 56-60. |
Shi Y J, Wang X F, Wang Y Q, et al. Research progress on CPU liquid cooling instrument and coolant materials[J]. Materials Review, 2012, 26(21): 56-60. | |
55 | Wang H F, Lin G P, Bai L Z, et al. Comparative study of two loop heat pipes using R134a as the working fluid[J]. Applied Thermal Engineering, 2020, 164: 114459. |
56 | Tharayil T, Asirvatham L G, Rajesh S, et al. Effect of nanoparticle coating on the performance of a miniature loop heat pipe for electronics cooling applications[J]. Journal of Heat Transfer, 2018, 140(2): 1-9. |
57 | Tian W, He S, Liu Z C, et al. Experimental investigation of a miniature loop heat pipe with eccentric evaporator for cooling electronics[J]. Applied Thermal Engineering, 2019, 159: 113982. |
58 | 莫冬传, 邹冠生, 丁楠, 等. 双通道平板型环路热管的传热特性[J]. 化工学报, 2012, 63(S1): 114-118. |
Mo D C, Zou G S, Ding N, et al. Heat transfer characteristics of flat loop heat pipe with bi-transport loops[J]. CIESC Journal, 2012, 63(S1): 114-118. | |
59 | Li J, Lin F, Wang D M, et al. A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips[J]. Applied Thermal Engineering, 2013, 56(1/2): 18-26. |
60 | Jung E G, Boo J H. Experimental observation of thermal behavior of a loop heat pipe with a bypass line under high heat flux[J]. Energy, 2020, 197: 117241. |
61 | Tuhin A R, Huynh P H, Htoo K Z, et al. Thermal performance comparison of flat plate evaporator loop heat pipe operating between horizontal condition and gravity assisted condition[J]. Journal of Physics: Conference Series, 2018, 1086: 012013. |
62 | Liu L, Yuan B, Yang X P, et al. Experimental study of a novel loop heat pipe with a vapor-driven jet injector and a boiling pool[J]. International Journal of Heat and Mass Transfer, 2022, 184: 122267. |
63 | Wang S F, Huo J P, Zhang X F, et al. Experimental study on operating parameters of miniature loop heat pipe with flat evaporator[J]. Applied Thermal Engineering, 2012, 40: 318-325. |
64 | Zhu K, Li X Q, Li H L, et al. Experimental investigation on the effect of heat sink temperature on operational characteristics of a new-type loop heat pipe[J]. Energy Procedia, 2019, 158: 2423-2429. |
65 | Celata G P, Cumo M, Furrer M. Experimental tests of a stainless steel loop heat pipe with flat evaporator[J]. Experimental Thermal and Fluid Science, 2010, 34(7): 866-878. |
66 | Huynh P H, Zin H K, Kariya K, et al. Oscillating behavior of loop heat pipe when operating under overcharged condition[C]//International Heat Transfer Conference 16. Connecticut: Begellhouse, 2018: 4683-4691. |
67 | Holman T, Baldauff R W, Khrustalev D. Stabilizing loop heat pipe operation with control heaters[C]//AIAA Propulsion and Energy 2019 Forum. Indianapolis: AIAA, 2019: 4222. |
68 | Li J, Wang D M, Peterson G P. Experimental studies on a high performance compact loop heat pipe with a square flat evaporator[J]. Applied Thermal Engineering, 2010, 30(6/7): 741-752. |
69 | Gai D X, Yin Y, Chen C. Investigation of instability on loop heat pipe with flat evaporator[J]. IOP Conference Series: Earth and Environmental Science, 2020, 467(1): 012024. |
70 | He S, Zhou P, Liu W, et al. Experimental study on thermal performance of loop heat pipe with a composite-material evaporator for cooling of electronics[J]. Applied Thermal Engineering, 2020, 168: 114897. |
71 | Zhou W, Ling W S, Duan L, et al. Development and tests of loop heat pipe with multi-layer metal foams as wick structure[J]. Applied Thermal Engineering, 2016, 94: 324-330. |
72 | 王野, 纪献兵, 郑晓欢, 等. 多尺度复合毛细芯环路热管的传热特性[J]. 化工学报, 2015, 66(6): 2055-2061. |
Wang Y, Ji X B, Zheng X H, et al. Heat transfer characteristics of loop heat pipe with modulated composite porous wick[J]. CIESC Journal, 2015, 66(6): 2055-2061. | |
73 | Xu J Y, Zhang L, Xu H, et al. Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks[J]. International Journal of Heat and Mass Transfer, 2014, 72: 378-387. |
74 | Mathews A J, Ranjan S, Inbaoli A, et al. Optimization of the sintering parameters of a biporous copper-nickel composite wick for loop heat pipes[J]. Materials Today: Proceedings, 2021, 46: 9297-9302. |
75 | Wu S C, Peng J C, Lai S R, et al. Investigation of the effect of heat leak in loop heat pipes with flat evaporator[C]//2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference. Taipei, 2009: 348-351. |
76 | Li X Q, Zhu K, Li H L, et al. Performance comparison regarding loop heat pipes with different evaporator structures[J]. International Journal of Thermal Sciences, 2019, 136: 86-95. |
77 | Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipes[J]. Applied Thermal Engineering, 2007, 27(5/6): 894-901. |
78 | Liu L, Yang X P, Yuan B, et al. Investigation of temperature oscillations in a novel loop heat pipe with a vapor-driven jet injector[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121672. |
79 | Xu J Y, Wang Z Y, Xu H, et al. Experimental research on the heat performance of a flat copper-water loop heat pipe with different inventories[J]. Experimental Thermal and Fluid Science, 2017, 84: 110-119. |
80 | Holman T, Baldauff R, Khrustalev D. Thermal-fluid transients in a high-power loop heat pipe with attached mass[C]//2018 International Energy Conversion Engineering Conference. Cincinnati: AIAA, 2018: 4580. |
81 | Yang R, Lin G P, He J, et al. Investigation on the effect of thermoelectric cooler on LHP operation with non-condensable gas[J]. Applied Thermal Engineering, 2017, 110: 1189-1199. |
82 | Gai D X. Temperature oscillation mechanism of a flat-type loop heat pipe[J]. Heat Transfer Research, 2020, 51(14): 1301-1315. |
83 | 江驰, 刘志春, 杨金国, 等. 泵辅助毛细相变回路的启动性能研究[J]. 工程热物理学报, 2016, 37(11): 2457-2462. |
Jiang C, Liu Z C, Yang J G, et al. Performance study of pump-assisted capillary phase change loop with startup[J]. Journal of Engineering Thermophysics, 2016, 37(11): 2457-2462. | |
84 | Yushakova S, Vershinin S, Maydanik Y F. Investigation of the operating characteristics of a loop heat pipe at different condenser cooling temperatures[J]. Heat Pipe Science and Technology, An International Journal, 2012, 3(1): 69-82. |
85 | Wang Y W, Cen J W, Jiang F M, et al. LHP heat transfer performance: a comparison study about sintered copper powder wick and copper mesh wick[J]. Applied Thermal Engineering, 2016, 92: 104-110. |
86 | 龙延, 魏进家, 吕虓. 不同倾角下平板型环路热管的实验研究[J]. 西安交通大学学报, 2013, 47(5): 38-43. |
Long Y, Wei J J, Lv X. Experimental study on loop heat pipe with flat evaporator at different tilt angles[J]. Journal of Xi’an Jiaotong University, 2013, 47(5): 38-43. | |
87 | 张荩文, 张泉, 杜晟. 新型液线毛细芯环路热管启动及传热性能[J]. 科学技术与工程, 2021, 21(16): 6704-6709. |
Zhang J W, Zhang Q, Du S. Start-up and heat transfer performance of a novel loop heat pipe with liquid line wick[J]. Science Technology and Engineering, 2021, 21(16): 6704-6709. | |
88 | 莫冬传, 邹冠生, 潘亚宏, 等. 平板环路热管长期应用于LED散热的研究[C]//中国工程热物理学会传热传质分会. 东莞, 2012. |
Mo D S, Zou G S, Pan Y H, et al. Study on long-term application of flat loop heat pipe in LED heat dissipation[C]// Heat and Mass Transfer Conference of Chinese Society of Engineering Thermophysics. Dongguan, 2012. | |
89 | Ye H Y, Sokolovskij R, van Zeijl H W, et al. A polymer based miniature loop heat pipe with silicon substrate and temperature sensors for high brightness light-emitting diodes[J]. Microelectronics Reliability, 2014, 54(6/7): 1355-1362. |
90 | 林梓荣, 汪双凤, 张礼政. 针对显卡散热的微小平板型环路热管实验研究[C]//第十三届全国热管会议. 上海, 2012. |
Lin Z R, Wang S F, Zhang L Z. Experimental study on micro-flat loop heat pipe for heat dissipation of display card [C]//13th National Heat Pipe Conference. Shanghai, 2012. | |
91 | 鲁祥友, 肖乐乐, 鲁飞, 等. 夏热冬冷地区回路热管应用于农村通信基站散热的特性研究[J]. 流体机械, 2018, 46(5): 12, 58-62. |
Lu X Y, Xiao L L, Lu F, et al. Research on cooling characteristics of loop heat pipe applied to rural base station in the hot summer and cold winter regions[J]. Fluid Machinery, 2018, 46(5):12, 58-62. | |
92 | 闫涛, 李学良, 梁惊涛, 等. 用于电厂IGBT模块散热的回路热管研制[J]. 工程热物理学报, 2016, 37(5): 952-956. |
Yan T, Li X L, Liang J T, et al. Research on a loop heat pipe for heat dissipation of IGBT modules in a power plant[J]. Journal of Engineering Thermophysics, 2016, 37(5): 952-956. | |
93 | Bernagozzi M, Georgoulas A, Miché N, et al. Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts[J]. Applied Thermal Engineering, 2021, 194: 117061. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 355
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 674
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||