化工学报 ›› 2022, Vol. 73 ›› Issue (7): 3262-3272.doi: 10.11949/0438-1157.20220141

• 能源和环境工程 • 上一篇    下一篇

反应工程方法在锂电池真空干燥模拟上的应用

杨兴富1(),陈文1,肖杰2,陈晓东2   

  1. 1.宁德新能源科技有限公司,福建 宁德 352100
    2.苏州大学材料与化学化工学部,化工与环境工程学院,江苏 苏州 215123
  • 收稿日期:2022-01-19 修回日期:2022-04-09 出版日期:2022-07-05 发布日期:2022-08-01
  • 通讯作者: 杨兴富 E-mail:575591751@qq.com
  • 作者简介:杨兴富(1988—),男,硕士,工程师,575591751@qq.com

Application of reaction engineering approach in modelling vacuum baking of lithium battery

Xingfu YANG1(),Wen CHEN1,Jie XIAO2,Xiaodong CHEN2   

  1. 1.Amperex Technology Limited, Ningde 352100, Fujian, China
    2.School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
  • Received:2022-01-19 Revised:2022-04-09 Published:2022-07-05 Online:2022-08-01
  • Contact: Xingfu YANG E-mail:575591751@qq.com

摘要:

锂离子电池注液之前的真空干燥,对于电芯的循环性能、安全性、稳定性有极其重要的影响。电芯结构设计、材料体系、烘箱尺寸等的不同会导致真空干燥过程存在差异。反应工程方法(REA)在常压、高初始水含量的对流干燥模拟预测上已有广泛应用,本研究将REA干燥理论应用于真空、低初始水含量的干燥过程仿真,发现与实验结果匹配良好。同时考虑了电芯气袋与烘箱环境湿度变化对干燥过程的影响,水含量预测偏差小于10%,利用单因子仿真实验所总结的规律能用于指导锂电池真空干燥工艺的改善。介绍了该模型在生产中的应用情况,也表明REA将在锂电池真空干燥预测上有很好的工业应用前景。

关键词: 锂电池, 真空, 干燥, 反应工程方法, 蒸发, 模拟

Abstract:

Vacuum baking before electrolyte injection has an important impact on the cycling performance, safety and stability of lithium battery. Differences in cell structure design, material system, oven size, etc. will lead to differences in the vacuum drying process. For vacuum baking, drying performance varies with different cell design, materials and oven size. Reaction engineering approach (REA) to drying modelling has been widely used for convective drying under atmospheric pressure and high initial water content materials. Here, REA was applied to the extremely low moisture process for battery vacuum baking. The results matched well with the experimental results. The influence of environmental humidity on drying process is considered in this work, and the prediction error is less than 10%. The rules of thumb established in this work by single factor experiment can guide the improvement of vacuum drying process of lithium-ion battery. The application in mass production is also briefly introduced here. The current work has demonstrated that REA can have excellent application in vacuum drying for lithium battery.

Key words: lithium battery, vacuum, baking, reaction engineering approach, evaporation, simulation

中图分类号: 

  • TQ 02

图1

真空干燥简化模型"

图2

简化的电芯温升(a)与环境压力对数(b)曲线"

表1

真空干燥实验组别"

组别温度/℃真空度/kPa
185-97
295-97
385-101
495-101

图3

仿真模拟的干燥曲线与实验数据对比"

图4

不同条件下电芯水蒸气平均分压对比"

图5

固体/气体中水浓度云图 (组别1:85℃ & -97 kPa)"

表2

偏差分析"

项目组1组2组3组4
相关系数平方R20.999090.999500.998890.99893
均方根误差RMSE9.9940810.6992913.094099.70212
平均相对误差MRE0.040180.070660.088720.07039

表3

关键变量初始值"

变量数值数据来源
换气有/无实验
传质系数hm=Dgδ×θ文献[13]
多孔介质平均直径15 μm实验
孔隙率0.3实验
初始水含量700 mg/kg实验

图6

有无“呼吸”换气动作对干燥的影响"

图7

有无“呼吸”换气动作对电芯水蒸气分压的影响"

图8

传质系数对干燥的影响"

图9

颗粒平均直径对干燥的影响"

图10

孔隙率对干燥的影响"

图11

电芯初始水含量对干燥的影响"

图12

零维模型与三维模型干燥仿真结果对比"

图13

钴酸锂电芯的温升(a)与环境压力对数(b)曲线"

表4

钴酸锂电芯的平衡干基含水率"

温度/℃平衡干基含水率Xb
200.000300
750.000105
850.000086
950.000080
1050.000070

图14

钴酸锂电芯的相对活化能曲线"

图15

钴酸锂电芯水含量仿真预测与实验结果对比"

表5

不同实验条件下实测与预测水含量对比"

实验条件实测水含量/ (mg/kg)预测水含量/ (mg/kg)偏差/ (mg/kg)
85℃&干燥200 min73.479.96.5
85℃&干燥150 min88.085.4-2.6
85℃&干燥90 min99.9108.58.6
82℃&干燥90 min119.5116.1-3.4
80℃&干燥85 min129.7132.73.0
85℃&干燥65 min143.8146.72.9
83℃&干燥65 min158.3164.56.2
83℃&干燥60 min165.9185.519.6

图16

量产实测与预测水含量对比"

图17

磷酸铁锂电芯(a)与三元电芯(b)水含量仿真预测与实验结果对比"

1 肖顺华, 章明方. 水分对锂离子电池性能的影响[J]. 应用化学, 2005, 22(7): 764-767.
Xiao S H, Zhang M F. Influence of water mass fraction on performance of lithium ion batteries[J]. Chinese Journal of Applied Chemistry, 2005, 22(7): 764-767.
2 朱静, 于申军, 陈志奎, 等. 水分对锂离子电池性能的影响研究[J]. 华南师范大学学报(自然科学版), 2009, 41(S1): 245-247.
Zhu J, Yu S J, Chen Z K, et al. Effect of water contamination on the electrochemical performance of lithium-ion battery[J]. Journal of South China Normal University (Natural Science Edition), 2009, 41(S1): 245-247.
3 田文风. 锂电池极片真空干燥工艺仿真及优化[D]. 武汉: 华中科技大学, 2017.
Tian W F. Simulation and optimization of lithium battery electrode vacuum drying process[D]. Wuhan: Huazhong University of Science and Technology, 2017.
4 陈帅. 磷酸铁锂动力电池真空干燥过程的传热传质模拟研究[D]. 沈阳: 东北大学, 2017.
Chen S. Simulation of heat and mass transfer in vacuum drying process of LiFePO4 power battery[D]. Shenyang: Northeastern University, 2017.
5 Hussain M M, Dincer I. Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: a finite-difference approach[J]. International Journal of Heat and Mass Transfer, 2003, 46(21): 4033-4039.
6 Hussain M M, Dincer I. Numerical simulation of two-dimensional heat and moisture transfer during drying of a rectangular object[J]. Numerical Heat Transfer, Part A: Applications, 2003, 43(8): 867-878.
7 Nadi F, Rahimi G H, Younsi R, et al. Numerical simulation of vacuum drying by Luikov's equations[J]. Drying Technology, 2012, 30(2): 197-206.
8 Murru M, Giorgio G, Montomoli S, et al. Model-based scale-up of vacuum contact drying of pharmaceutical compounds[J]. Chemical Engineering Science, 2011, 66(21): 5045-5054.
9 Hou L X, Zhou X, Wang S J. Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119704.
10 Chen X D, Xie G Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model[J]. Food and Bioproducts Processing, 1997, 75(4): 213-222.
11 Chen X D, Lin S X Q. Air drying of milk droplet under constant and time-dependent conditions[J]. AIChE Journal, 2005, 51(6): 1790-1799.
12 Lin S X Q, Chen X D. A model for drying of an aqueous lactose droplet using the reaction engineering approach[J]. Drying Technology, 2006, 24(11): 1329-1334.
13 Patel K, Chen X D, Jeantet R, et al. One-dimensional simulation of co-current, dairy spray drying systems—pros and cons[J]. Dairy Science & Technology, 2010, 90(2/3): 181-210.
14 Putranto A, Chen X D, Xiao Z Y, et al. Mathematical modeling of intermittent and convective drying of rice and coffee using the reaction engineering approach (REA)[J]. Journal of Food Engineering, 2011, 105(4): 638-646.
15 Putranto A, Chen X D. Spatial reaction engineering approach as an alternative for nonequilibrium multiphase mass-transfer model for drying of food and biological materials[J]. AIChE Journal, 2013, 59(1): 55-67.
16 Putranto A, Chen X D. An assessment on modeling drying processes: equilibrium multiphase model and the spatial reaction engineering approach (S-REA)[J]. Chemical Engineering Research and Design, 2015, 94: 660-672.
17 Yang X F, Xiao J, Woo M W, et al. Three-dimensional numerical investigation of a mono-disperse droplet spray dryer: validation aspects and multi-physics exploration[J]. Drying Technology, 2015, 33(6): 742-756.
18 Putranto A, Chen X D. Vacuum drying of food materials modeled and explored using the reaction engineering approach (REA) framework[J]. Drying Technology, 2021: 1-9.
19 Nield D A, Bejan A. Convection in Porous Media[M]. New York: Springer, 2013.
20 Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena[M]. 2nd ed. New York: Wiley, 2002.
21 张智贤, 阴育新. 锂离子电池材料含水量测试方法研究[J]. 天津科技, 2015, 42(12): 15-17.
Zhang Z X, Yin Y X. On moisture testing method for lithium ion battery materials[J]. Tianjin Science & Technology, 2015, 42(12): 15-17.
22 Peleg M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms1[J]. Journal of Food Process Engineering, 1993, 16(1): 21-37.
23 Foster K D, Bronlund J E, ( Tony) Paterson A H J. The prediction of moisture sorption isotherms for dairy powders[J]. International Dairy Journal, 2005, 15(4): 411-418.
24 Langklotz U, Schneider M, Michaelis A. Water uptake of tape-cast cathodes for lithium ion batteries[J]. Journal of Ceramic Science and Technology, 2013, 4(2): 69-76.
25 Eser J C, Wirsching T, Weidler P G, et al. Moisture adsorption behavior in anodes for Li-ion batteries[J]. Energy Technology, 2020, 8(2): 1801162.
[1] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[2] 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250.
[3] 杨光, 程鑫, 王峥, 王晔, 张良俊, 吴静怡. 微纳多孔结构中稀薄气体流动渗透率的解析型预测模型[J]. 化工学报, 2022, 73(7): 2895-2901.
[4] 孙国鑫, 苟萌萱, 周诚, 常佩, 贺高红, 姜晓滨. 高浓度Na+//NO3-, SO42--H2O溶液的膜蒸馏结晶耦合过程调控[J]. 化工学报, 2022, 73(7): 3078-3089.
[5] 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108.
[6] 赵庆杰, 胡晓红, 张超, 凡凤仙. 蒸汽在含有不可溶核和可溶无机盐的细颗粒物表面的核化特性[J]. 化工学报, 2022, 73(7): 3251-3261.
[7] 黄盼, 练成, 刘洪来. 基于模拟退火算法的真实多孔电极中热-质传递的研究[J]. 化工学报, 2022, 73(6): 2529-2542.
[8] 杨晖, 李宏泽, 陈泉, 郑泽希, 李然, 孙其诚. 从质量流向漏斗流转变过程中的动力学分析[J]. 化工学报, 2022, 73(6): 2722-2731.
[9] 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661.
[10] 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741.
[11] 施炜斌, 龙姗姗, 杨晓钢, 蔡心悦. 计及气泡诱导与剪切湍流的气泡破碎、湍流相间扩散及传质模型[J]. 化工学报, 2022, 73(6): 2573-2588.
[12] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[13] 刘薇薇, 崔国民, 张璐, 肖媛, 杨其国, 张冠华. 一种应用于换热网络综合的阻尼优化方法[J]. 化工学报, 2022, 73(5): 2060-2072.
[14] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[15] 叶枫, 李刚, 付鑫, 郎雪梅, 王燕鸿, 王盛龙, 张建利, 樊栓狮. 多孔膜反应器中丙烷催化脱氢制丙烯的模拟研究[J]. 化工学报, 2022, 73(5): 2008-2019.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!