1 |
Al-RabghiO M, BeiruttyM, AkyurtM, et al. Recovery and utilization of waste heat[J]. Heat Recovery Systems and CHP, 1993, 13(5): 463-470.
|
2 |
HungT C, ShaiT Y, WangS K. A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat[J]. Energy, 1997, 22(7): 661-667.
|
3 |
WuP, YangC J. Identification and control of blast furnace gas top pressure recovery turbine unit[J]. ISIJ International, 2012, 52(1): 96-100.
|
4 |
XuC, CangD. A brief overview of low CO2 emission technologies for iron and steel making[J]. Journal of Iron and Steel Research, International, 2010, 17(3): 1-7.
|
5 |
TobiesenF A, SvendsenH F, MejdellT. Modeling of blast furnace CO2 capture using amine absorbents[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7811-7819.
|
6 |
PaivaA, CraveiroR, ArosoI, et al. Natural deep eutectic solvents-solvents for the 21st century[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(5): 1063-1071.
|
7 |
ShahidE M, JamalY. A review of biodiesel as vehicular fuel[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9): 2484-2494.
|
8 |
杨鑫. 己酸甲酯和醇混合燃料着火延迟反应机理的研究[D]. 上海: 上海交通大学, 2014.
|
|
YangX. Experimental and kinetic modeling study on ignition delay of methyl hexanoate with n-butanol and ethanol[D]. Shanghai: Shanghai Jiao Tong University, 2014.
|
9 |
NguyenT T X, NguyenHuynhD. Predicting the phase equilibria of esters/alcohols mixtures and biodiesel density from its fatty acid composition using the modified group-contribution PC-SAFT[J]. Fluid Phase Equilibria, 2018, 472: 128-146.
|
10 |
PaulyJ, KouakouA C, HabriouxM, et al. Heat capacity measurements of pure fatty acid methyl esters and biodiesels from 250 to 390 K[J]. Fuel, 2014, 137: 21-27.
|
11 |
van BommelM J, OonkH A J, van MiltenburgJ C. Heat capacity measurements of 13 methyl esters of n-carboxylic acids from methyl octanoate to methyl eicosanoate between 5 K and 350 K[J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1036-1042.
|
12 |
ZaitsauD H, PaulechkaY U, BlokhinA V, et al. Thermodynamics of ethyl decanoate[J]. Journal of Chemical & Engineering Data, 2009, 54(11): 3026-3033.
|
13 |
van MiltenburgJ C, OonkH A J. Thermal properties of ethyl undecanoate and ethyl tridecanoate by adiabatic calorimetry[J]. Journal of Chemical & Engineering Data, 2005, 50(4): 1348-1352.
|
14 |
DzidaM, JężakS, SumaraJ, et al. High pressure physicochemical properties of biodiesel components used for spray characteristics in diesel injection systems[J]. Fuel, 2013, 111: 165-171.
|
15 |
DzidaM, JężakS, SumaraJ, et al. High-pressure physicochemical properties of ethyl caprylate and ethyl caprate[J]. Journal of Chemical & Engineering Data, 2013, 58(7): 1955-1962.
|
16 |
AissaM A, IvanisG R, RadovicI R, et al. Experimental investigation and modeling of thermophysical properties of pure methyl and ethyl esters at high pressures[J]. Energy & Fuels, 2017, 31(7): 7110-7122.
|
17 |
BogatishchevaN S, FaizullinM Z, NikitinE D. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components[J]. Russian Journal of Physical Chemistry A, 2017, 91(9): 1647-1653.
|
18 |
LiuX Y, HeM G, SuC, et al. Heat capacities of fatty acid methyl esters from 300 K to 380 K and up to 4.25 MPa[J]. Fuel, 2015, 157: 240-244.
|
19 |
LiuX Y, SuC, QiX T, et al. Isobaric heat capacities of ethyl heptanoate and ethyl cinnamate at pressures up to 16.3 MPa[J]. The Journal of Chemical Thermodynamics, 2016, 93: 70-74.
|
20 |
LiuX Y, ZhuC Y, SuC, et al. Isobaric molar heat capacities of binary mixtures containing methyl caprate and methyl laurate at pressures up to 16.2 MPa[J]. Thermochimica Acta, 2017, 651: 43-46.
|
21 |
SuC, ZhuC Y, YangF, et al. Isobaric molar heat capacity of ethyl octanoate and ethyl decanoate at pressures up to 24 MPa[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2252-2256.
|
22 |
LiuX Y, ZhuC Y, YangF, et al. Experimental and correlational study of isobaric molar heat capacities of fatty acid esters: ethyl nonanoate and ethyl dodecanoate[J]. Fluid Phase Equilibria, 2019, 479: 47-51.
|
23 |
ZhuC, YangF, LiuX, et al. Isobaric molar heat capacities measurement of binary mixtures containing ethyl laurate and ethanol at high pressures[J]. Journal of Molecular Liquids, 2019, 280: 301-306.
|
24 |
WilhelmE. What you always wanted to know about heat capacities, but were afraid to ask[J]. Journal of Solution Chemistry, 2010, 39(12): 1777-1818.
|
25 |
SegoviaJ J, Vega-MazaD, ChamorroC R, et al. High-pressure isobaric heat capacities using a new flow calorimeter[J]. The Journal of Supercritical Fluids, 2008, 46(3): 258-264.
|
26 |
IshmaelM P E, LukawskiM Z, TesterJ W. Isobaric heat capacity (Cp) measurements of supercritical fluids using flow calorimetry: equipment design and experimental validation with carbon dioxide, methanol, and carbon dioxide-methanol mixtures[J]. The Journal of Supercritical Fluids, 2016, 117: 72-79.
|
27 |
KagawaN, MatsuguchiA, YamayaK, et al. Behavior of isobaric heat capacity of R32 in the gas phase[J]. International Journal of Refrigeration, 2013, 36(8): 2216-2222.
|
28 |
MiyazawaT, KondoS, SuzukiT, et al. Specific heat capacity at constant pressure of ethanol by flow calorimetry[J]. Journal of Chemical & Engineering Data, 2012, 57(6): 1700-1707.
|
29 |
HeiT K, RaalJ D. Heat capacity measurement by flow calorimetry: an exact analysis[J]. AIChE Journal, 2009, 55(1): 206-216.
|
30 |
HeM, SuC, LiuX, et al. Measurement of isobaric heat capacity of pure water up to supercritical conditions[J]. The Journal of Supercritical Fluids, 2015, 100: 1-6.
|