化工学报 ›› 2020, Vol. 71 ›› Issue (2): 487-499.DOI: 10.11949/0438-1157.20190754
收稿日期:
2019-07-02
修回日期:
2019-10-17
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
吴送姑
作者简介:
张文铖(1995—),男,硕士研究生,基金资助:
Wencheng ZHANG1(),Junbo GONG1,Weibing DONG2,Songgu WU1()
Received:
2019-07-02
Revised:
2019-10-17
Online:
2020-02-05
Published:
2020-02-05
Contact:
Songgu WU
摘要:
相比于传统的溶液相结晶,凝胶用作结晶介质时,由于能抑制对流和减慢溶质分子的扩散,除了能提供较大的过饱和度且不会导致爆发成核,以及使溶质分子在生长面上连续地生长之外,还可以通过设计特定的凝胶剂为溶质分子提供模板或者活性成核位点,这使得凝胶相结晶成为了一种有效的结晶控制手段,引起了研究人员的广泛关注。综述了高分子凝胶、超分子凝胶以及无机凝胶如何有效地控制结晶成核和生长的速度,调控晶型、晶习和晶体粒度,简单介绍了微凝胶在溶液相结晶中的作用,以及凝胶相结晶未来的发展趋势。
中图分类号:
张文铖,龚俊波,董伟兵,吴送姑. 凝胶对结晶过程影响的研究进展[J]. 化工学报, 2020, 71(2): 487-499.
Wencheng ZHANG,Junbo GONG,Weibing DONG,Songgu WU. Research progress in effect of gel on crystallization process[J]. CIESC Journal, 2020, 71(2): 487-499.
1 | Pauchet M, Morelli T, Coste S, et al. Crystallization of (+/-)-modafinil in gel: access to form I, form Ⅲ, and twins[J]. Crystal Growth & Design, 2006, 6(8): 1881-1889. |
2 | Oaki Y, Imai H. Experimental demonstration for the morphological evolution of crystals grown in gel media[J]. Crystal Growth & Design, 2003, 3(5): 711-716. |
3 | Petrova R I, Swift J A. Habit changes of sodium bromate crystals grown from gel media[J]. Crystal Growth & Design, 2002, 2(6): 573-578. |
4 | Petrova R I, Patel R, Swift J A. Habit modification of asparagine monohydrate crystals by growth in hydrogel media[J]. Crystal Growth & Design, 2006, 6(12): 2709-2715. |
5 | Li H, Fujiki Y, Sada K, et al. Gel incorporation inside of organic single crystals grown in agarose hydrogels[J]. CrystEngComm, 2011, 13(4): 1060-1062. |
6 | Chen L, Ye T, Liu Y, et al. Gel network incorporation into single-crystals: effects of gel structures and crystal-gel interaction[J]. CrystEngComm, 2014, 16(30): 6901-6906. |
7 | Yang D, Qi L M, Ma J M. Well-defined star-shaped calcite crystals formed in agarose gels[J]. Chemical Communications, 2003, (10): 1180-1181. |
8 | Duffus C, Camp P J, Alexander A J. Spatial control of crystal nucleation in agarose gel[J]. Journal of the American Chemical Society, 2009, 131(33): 11676-11677. |
9 | Li H Y, Xin H L, Muller D A, et al. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels[J]. Science, 2009, 326(5957): 1244-1247. |
10 | Li H Y, Estroff L A. Porous calcite single crystals grown from a hydrogel medium[J]. CrystEngComm, 2007, 9(12): 1153-1155. |
11 | Petrova R I, Swift J A. Selective growth and distribution of crystalline enantiomers in hydrogels[J]. Journal of the American Chemical Society, 2004, 126(4): 1168-1173. |
12 | Sugiyama S, Tanabe K, Hirose M, et al. Protein crystallization in agarose gel with high strength: developing an automated system for protein crystallographic processes[J]. Japanese Journal of Applied Physics, 2009, 48(7): 075502. |
13 | Matsumura H, Sugiyama S, Hirose M, et al. Approach for growth of high-quality and large protein crystals[J]. Journal of Synchrotron Radiation, 2011, 18: 16-19. |
14 | Biertumpfel C, Basquin J, Suck D, et al. Crystallization of biological macromolecules using agarose gel[J]. Acta Crystallographic a Section D-Structural Biology, 2002, 58: 1657-1659. |
15 | Tasnim T, Goh A, Gowayed O, et al. Dendritic growth of glycine from nonphotochemical laser-induced nucleation of supersaturated aqueous solutions in agarose gels[J]. Crystal Growth & Design, 2018, 18(10): 5927-5933. |
16 | Grassmann O, Muller G, Lobmann P. Organic-inorganic hybrid structure of calcite crystalline assemblies grown in a gelatin hydrogel matrix: relevance to biomineralization[J]. Chemistry of Materials, 2002, 14(11): 4530-4535. |
17 | Huang Y X, Buder J, Cardoso-Gil R, et al. Shape development and structure of a complex (otoconia-like?) calcite-gelatine composite[J]. Angewandte Chemie-International Edition, 2008, 47(43): 8280-8284. |
18 | Yucel U, Coupland J N. Ultrasonic characterization of lactose crystallization in gelatin gels[J]. Journal of Food Science, 2011, 76(1): E48-E54. |
19 | Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40(7): 3941-3994. |
20 | Shafiei-Sabet S, Hamad W Y, Hatzikiriakos S G. Rheology of nanocrystalline cellulose aqueous suspensions[J]. Langmuir, 2012, 28(49): 17124-17133. |
21 | Lewis L, Derakhshandeh M, Hatzikiriakos S G, et al. Hydrothermal gelation of aqueous cellulose nanocrystal suspensions[J]. Biomacromolecules, 2016, 17(8): 2747-2754. |
22 | Heath L, Thielemans W. Cellulose nanowhisker aerogels[J]. Green Chemistry, 2010, 12(8): 1448-1453. |
23 | Huang L, Chen X, Nguyen T X, et al. Nano-cellulose 3D-networks as controlled-release drug carriers[J]. Journal of Materials Chemistry B, 2013, 1(23): 2976-2984. |
24 | Valo H, Arola S, Laaksonen P, et al. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels[J]. European Journal of Pharmaceutical Sciences, 2013, 50(1): 69-77. |
25 | Badshah M, Ullah H, Khan S A, et al. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery[J]. Cellulose, 2017, 24(11): 5041-5052. |
26 | Ruiz-Palomero C, Kennedy S R, Soriano M L, et al. Pharmaceutical crystallization with nanocellulose organogels[J]. Chemical Communications, 2016, 52(50): 7782-7785. |
27 | Banerjee M, Saraswatula S, Willows L G, et al. Pharmaceutical crystallization in surface-modified nanocellulose organogels[J]. Journal of Materials Chemistry B, 2018, 6(44): 7317-7328. |
28 | Sugiyama S, Shimizu N, Sazaki G, et al. A novel approach for protein crystallization by a synthetic hydrogel with thermoreversible gelation polymer[J]. Crystal Growth & Design, 2013, 13(5): 1899-1904. |
29 | Parveen N, Khan A A, Baskar S, et al. Intraperitoneal transplantation of hepatocytes embedded in thermoreversible gelation polymer (mebiol gel) in acute liver failure rat model[J]. Hepatitis Monthly, 2008, 8(4): 275-280. |
30 | Cordier P, Tournilhac F, Soulie-Ziakovic C, et al. Self-healing and thermoreversible rubber from supramolecular assembly[J]. Nature, 2008, 451(7181): 977-980. |
31 | Steed J W. Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry[J]. Chemical Society Reviews, 2010, 39(10): 3686-3699. |
32 | Segarra-Maset M D, Nebot V J, Miravet J F, et al. Control of molecular gelation by chemical stimuli[J]. Chemical Society Reviews, 2013, 42(17): 7086-7098. |
33 | Babu S S, Praveen V K, Ajayaghosh A. Functional pi-gelators and their applications[J]. Chemical Reviews, 2014, 114(4): 1973-2129. |
34 | Okesola B O, Vieira V M P, Cornwell D J, et al. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives - efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future[J]. Soft Matter, 2015, 11(24): 4768-4787. |
35 | Kumar D K, Steed J W. Supramolecular gel phase crystallization: orthogonal self-assembly under non-equilibrium conditions[J]. Chemical Society Reviews, 2014, 43(7): 2080-2088. |
36 | Foster J A, Piepenbrock M-O M, Lloyd G O, et al. Anion-switchable supramolecular gels for controlling pharmaceutical crystal growth[J]. Nature Chemistry, 2010, 2(12): 1037-1043. |
37 | Foster J A, Damodaran K K, Maurin A, et al. Pharmaceutical polymorph control in a drug-mimetic supramolecular gel[J]. Chemical Science, 2017, 8(1): 78-84. |
38 | Dawn A, Andrew K S, Yufit D S, et al. Supramolecular gel control of cisplatin crystallization: identification of a new solvate form using a cisplatin-mimetic gelator[J]. Crystal Growth & Design, 2015, 15(9): 4591-4599. |
39 | Dastidar P. Supramolecular gelling agents: can they be designed?[J]. Chemical Society Reviews, 2008, 37(12): 2699-2715. |
40 | Suzuki M, Nakajima Y, Yumoto M, et al. In situ organogelation at room temperature: direct synthesis of gelators in organic solvents[J]. Organic & Biomolecular Chemistry, 2004, 2(8): 1155-1159. |
41 | de Loos M, Ligtenbarg A G J, van Esch J, et al. Tripodal tris-urea derivatives as gelators for organic solvents[J]. European Journal of Organic Chemistry, 2000, (22): 3675-3678. |
42 | Estroff L A, Addadi L, Weiner S, et al. An organic hydrogel as a matrix for the growth of calcite crystals[J]. Organic & Biomolecular Chemistry, 2004, 2(1): 137-141. |
43 | Geffroy C, Foissy A, Persello J, et al. Surface complexation of calcite by carboxylates in water[J]. Journal of Colloid and Interface Science, 1999, 211(1): 45-53. |
44 | Belcher A M, Wu X H, Christensen R J, et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins[J]. Nature, 1996, 381(6577): 56-58. |
45 | Falini G, Albeck S, Weiner S, et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules[J]. Science, 1996, 271(5245): 67-69. |
46 | Daly R, Kotova O, Boese M, et al. Chemical nano-gardens: growth of salt nanowires from supramolecular self-assembly gels[J]. ACS Nano, 2013, 7(6): 4838-4845. |
47 | Kotova O, Daly R, dos Santos C M G, et al. Europium-directed self-assembly of a luminescent supramolecular gel from a tripodal terpyridine-based ligand[J]. Angewandte Chemie-International Edition, 2012, 51(29): 7208-7212. |
48 | Ghosh D, Ferfolja K, Drabavicius Z, et al. Crystal habit modification of Cu(Ⅱ) isonicotinate-N-oxide complexes using gel phase crystallisation[J]. New Journal of Chemistry, 2018, 42(24): 19963-19970. |
49 | Aparicio F, Matesanz E, Sanchez L. Cooperative self-assembly of linear organogelators. Amplification of chirality and crystal growth of pharmaceutical ingredients[J]. Chemical Communications, 2012, 48(46): 5757-5759. |
50 | Kennedy S R, Jones C D, Yufit D S, et al. Tailored supramolecular gel and microemulsion crystallization strategies - is isoniazid really monomorphic?[J]. CrystEngComm, 2018, 20(10): 1390-1398. |
51 | Flechon A, Culine S, Droz J P. Intensive and timely chemotherapy, the key of success in testicular cancer[J]. Critical Reviews in Oncology Hematology, 2001, 37(1): 35-46. |
52 | Buerkle L E, Rowan S J. Supramolecular gels formed from multi-component low molecular weight species[J]. Chemical Society Reviews, 2012, 41(18): 6089-6102. |
53 | Terech P, Deme B, Aubouy M, et al. Self-assembled fibrillar networks —preface[J]. Langmuir, 2002, 18(19): 7095. |
54 | Brizard A, Stuart M, van Bommel K, et al. Preparation of nanostructures by orthogonal self-assembly of hydrogelators and surfactants[J]. Angewandte Chemie-International Edition, 2008, 47(11): 2063-2066. |
55 | Brizard A M, Stuart M C A, van Esch J H. Self-assembled interpenetrating networks by orthogonal self assembly of surfactants and hydrogelators[J]. Faraday Discussions, 2009, 143: 345-357. |
56 | Sugiyasu K, Kawano S I, Fujita N, et al. Self-sorting organogels with p-n heterojunction points[J]. Chemistry of Materials, 2008, 20(9): 2863-2865. |
57 | Moffat J R, Smith D K. Controlled self-sorting in the assembly of ‘multi-gelator gels[J]. Chemical Communications, 2009,(3): 316-318. |
58 | Morris K L, Chen L, Raeburn J, et al. Chemically programmed self-sorting of gelator networks[J]. Nature Communications, 2013, 4: 1-6. |
59 | Buendia J, Matesanz E, Smith D K, et al. Multi-component supramolecular gels for the controlled crystallization of drugs: synergistic and antagonistic effects[J]. CrystEngComm, 2015, 17(42): 8146-8152. |
60 | Draper E R, Adams D J. Low-molecular-weight gels: the state of the art[J]. Chem., 2017, 3(3): 390-410. |
61 | Raeburn J, Adams D J. Multicomponent low molecular weight gelators[J]. Chemical Communications, 2015, 51(25): 5170-5180. |
62 | Bloom S, Liu C, Kolmel D K, et al. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials[J]. Nature Chemistry, 2018, 10(2): 205-211. |
63 | Voorhaar L, Hoogenboom R. Supramolecular polymer networks: hydrogels and bulk materials[J]. Chemical Society Reviews, 2016, 45(14): 4013-4031. |
64 | Wang J R, Bao J, Fan X, et al. pH-switchable vitamin B-9 gels for stoichiometry-controlled spherical co-crystallization[J]. Chemical Communications, 2016, 52(92): 13452-13455. |
65 | Rahim M A, Hata Y, Bjornmalm M, et al. Supramolecular metal-phenolic gels for the crystallization of active pharmaceutical ingredients[J]. Small, 2018, 14(26):e1801202. |
66 | Lock L L, Lacomb M, Schwarz K, et al. Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures[J]. Faraday Discussions, 2013, 166: 285-301. |
67 | Xing P, Chu X, Ma M, et al. Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies[J]. Physical Chemistry Chemical Physics, 2014, 16(18): 8346-8359. |
68 | Chakraborty P, Roy B, Bairi P, et al. Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption[J]. Journal of Materials Chemistry, 2012, 22(38): 20291-20298. |
69 | Tan D, Loots L, Friscic T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs)[J]. Chemical Communications, 2016, 52(50): 7760-7781. |
70 | Rahim M A, Bjornmalm M, Suma T, et al. Metal-phenolic supramolecular gelation[J]. Angewandte Chemie-International Edition, 2016, 55(44): 13803-13807. |
71 | Conejero-Muriel M, Gavira J A, Pineda-Molina E, et al. Influence of the chirality of short peptide supramolecular hydrogels in protein crystallogenesis[J]. Chemical Communications, 2015, 51(18): 3862-3865. |
72 | Dawn A, Mirzamani M, Jones C D, et al. Investigating the effect of supramolecular gel phase crystallization on gel nucleation[J]. Soft Matter, 2018, 14(46): 9489-9497. |
73 | Gavira J A, van Driessche A E S, Garcia-Ruiz J M. Growth of ultrastable protein-silica composite crystals[J]. Crystal Growth & Design, 2013, 13(6): 2522-2529. |
74 | Garcia-Ruiz J M, Gavira J A, Otalora F, et al. Reinforced protein crystals[J]. Materials Research Bulletin, 1998, 33(11): 1593-1598. |
75 | Grassman O, Neder R B, Putnis A, et al. Biomimetic control of crystal assembly by growth in an organic hydrogel network[J]. American Mineralogist, 2003, 88(4): 647-652. |
76 | Li H, Estroff L A. Hydrogels coupled with self-assembled monolayers: an in vitro matrix to study calcite biomineralization[J]. Journal of the American Chemical Society, 2007, 129(17): 5480-5483. |
77 | Halberstadt E S, Henisch H K, Nickl J, et al. Gel structure and crystal nucleation[J]. Journal of Colloid and Interface Science, 1969, 29(3): 469-471. |
78 | Oaki Y, Hayashi S, Imai H. A hierarchical self-similar structure of oriented calcite with association of an agar gel matrix: inheritance of crystal habit from nanoscale[J]. Chemical Communications, 2007, (27): 2841-2843. |
79 | Diao Y, Helgeson M E, Myerson A S, et al. Controlled nucleation from solution using polymer microgels[J]. Journal of the American Chemical Society, 2011, 133(11): 3756-3759. |
80 | Dendukuri D, Gu S S, Pregibon D C, et al. Stop-flow lithography in a microfluidic device[J]. Lab on a Chip, 2007, 7(7): 818-828. |
81 | Diao Y, Helgeson M E, Siam Z A, et al. Nucleation under soft confinement: role of polymer-solute interactions[J]. Crystal Growth & Design, 2012, 12(1): 508-517. |
82 | Diao Y, Whaley K E, Helgeson M E, et al. Gel-induced selective crystallization of polymorphs[J]. Journal of the American Chemical Society, 2012, 134(1): 673-684. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[3] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[6] | 谢诗婷, 刘壮, 谢锐, 巨晓洁, 汪伟, 潘大伟, 褚良银. 聚(N-异丙基丙烯酰胺-共聚-烯丙基硫脲)智能微凝胶的制备及其Hg2+响应性能的研究[J]. 化工学报, 2023, 74(6): 2689-2698. |
[7] | 范坤阳, 杨景兴, 许海波, 连兴容, 何凤梅, 陈聪慧, 李增耀. 遮光剂掺杂SiO2气凝胶传热的统一格子Boltzmann模型研究[J]. 化工学报, 2023, 74(5): 1974-1981. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 王瑞恒, 何品晶, 吕凡, 章骅. 垃圾焚烧飞灰水洗后三种固液分离方法参数比较及优化[J]. 化工学报, 2023, 74(4): 1712-1723. |
[10] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[11] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[12] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[13] | 鲁统鹏, 潘晓林, 吴鸿飞, 李煜, 于海燕. 有机絮凝剂对铁矿相沉降性能影响及其吸附机理[J]. 化工学报, 2022, 73(9): 4122-4132. |
[14] | 顾仁杰, 张加威, 靳雪阳, 文利雄. 微撞击流反应器制备镍钴复合氢氧化物超级电容器材料及其性能研究[J]. 化工学报, 2022, 73(8): 3749-3757. |
[15] | 李文涛, 林慧娟, 钟海. 原位构建富氟SEI的凝胶电解质用于金属锂二次电池[J]. 化工学报, 2022, 73(7): 3240-3250. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||