1 |
Brini R, Amara M, Jemmali H. Renewable energy consumption, international trade, oil price and economic growth inter-linkages: the case of tunisia[J]. Renew. Sustain. Energy Rev., 2017, 76(9): 620-627.
|
2 |
Mussard M. Solar energy under cold climatic conditions: a review[J]. Renew. Sustain. Energy Rev., 2017, 74(7): 733-745.
|
3 |
Johansson T B, Patwardhan A P. Global energy assessment—toward a sustainable future [J]. Bibliogr., 2012, 3/4(31): 9-17.
|
4 |
Xiao C F, Luo H L, Tang R S, et al. Solar thermal utilization in China[J]. Renewable Energy, 2004, 29(9): 1549-1556.
|
5 |
Shafieian A, Khiadani M, Nosrati A. Strategies to improve the thermal performance of heat pipe solar collectors in solar systems: a review[J]. Energy Conversion and Management, 2019, 183(3): 307-331.
|
6 |
Fu H D, Zhao X X, Ma L, et al. A comparative study on three types of solar utilization technologies for buildings: photovoltaic, solar thermal and hybrid photovoltaic/thermal systems[J]. Energy Conversion and Management, 2017, 140(15): 1- 13.
|
7 |
Leite G N P, Weschenfelder F, Araújo A M, et al. An economic analysis of the integration between air-conditioning and solar photovoltaic systems [J]. Energy Conversion and Management, 2019,185(4): 836-849.
|
8 |
Fang J, Liu Q B, Guo S P, et al. Spanning solar spectrum: a combined photochemical and thermochemical process for solar energy storage[J]. Applied Energy, 2019, 247(8): 116-126.
|
9 |
Fang J, Liu Q B, Guo S P, et al. A full-spectrum solar chemical energy storage system with photochemical process and thermochemical process[J]. Energy Procedia, 2018, 152(10): 1063-1068.
|
10 |
Otanicar T P, Phelan P E, Patrick R S, et al. Nanofluid based direct absorption solar collector[J]. Renew. Sustain. Energy Rev., 2010, 2(3): 1063-1073.
|
11 |
Robert A T,Patrick E P, Todd P O, et al. Nanofluid opticalproperty characterization: towards efficient direct absorption solar collectors[J]. Nanoscale Res., 2011,225(6):207-218.
|
12 |
Gorji T B, Ranjbar A A. A review on optical properties and application of nanofluids in direct absorption solar collectors(DASCs) [J]. Renew. Sustain. Energy Rev., 2017, 72(5): 10-32.
|
13 |
Minardi J E, Chuang H N. Performance of a “black” liquid flat-plate solar collector[J]. Sol. Energy, 1975, 17(3): 179-183.
|
14 |
Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME, 1995, 23(1): 99-105.
|
15 |
Bandarra E P, Mendoza O S H, Beicker C L L, et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system[J]. Energy Convers. Manag., 2014, 84(8): 261-267.
|
16 |
Amjad M, Yang Y, Raza G. Deposition pattern and tracer particle motion of evaporating multi-component sessile droplets[J]. Colloid Interface Sci., 2017, 506(11): 83-92.
|
17 |
Zamzamian A, KeyanpourRad M, KianiNeyestani M Y, et al. An experimental study on the effect of Cu-synthesized/EG nanofluid on the efficiency of flat-plate solar collectors[J]. Renewable Energy, 2014, 74(11): 658-664.
|
18 |
Jamal-Abad M T, Zamzamian A, Imani E, et al. Experimental study of the performance of a flat-plate collector using Cu-water nanofluid[J]. Thermophys. Heat Transf., 2013, 27(4): 756-760.
|
19 |
Chen M J, He Y R, Zhu J Q, et al. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes [J]. Energy Convers. Manag., 2016, 112(3): 21-30.
|
20 |
Zhang H, Chen H J, Du X, et al. Photothermal conversion characteristics of gold nanoparticle dispersions [J]. Sol. Energy, 2014, 100(2): 141-147.
|
21 |
Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396.
|
22 |
Mahian O, Kianifar A, Sahin A Z, et al. Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models[J]. Heat and Mass Transf., 2014, 78(11): 64-75.
|
23 |
Farajzadeh E, Movahed S, Hosseini R. Experimental and numerical investigations on the effect of Al2O3/TiO2/H2O nanofluids on thermal efficiency of the flat plate solar collector [J]. Renewable Energy, 2018, 118(8): 122-130.
|
24 |
Goudarzi K, Shojaeizadeh E, Nejati F. An experimental investigation on the simultaneous effect of CuO-H2O nanofluid and receiver helical pipe on the thermal efficiency of a cylindrical solar collector[J]. Appl. Therm. Eng., 2014, 73(1): 1234-1241.
|
25 |
Karami M, Akhavan-Bahabadi M A, Delfani S, et al. Experimental investigation of CuO nanofluid based direct absorption solar collector for residential applications[J]. Renew. Sustain. Energy Rev., 2015, 52(12): 793-801.
|
26 |
Meibodi S S, Kianifar A, Niazmand H, et al. Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/EG- water nanofluids[J]. International Communications in Heat and Mass Transfer, 2015, 65(7): 71-75.
|
27 |
Gupta H K, Agrawal G D, Mathur J. An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector[J]. Sol. Energy, 2015, 118(8): 390-396.
|
28 |
Karami M, Akhavan-Bahabadi M A, Delfani S, et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector[J]. Sol. Energy Mater. Sol. Cells, 2014, 121(2): 114-118.
|
29 |
Khullar V, Tyagi H, Phelan P E, et al. Solar energy harvesting using nanofluids-based concentrating solar collector[J]. Nanotechnol. Eng. Med., 2013, 3(3): 310-319.
|
30 |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 30(6): 666-669.
|
31 |
郭晓琴, 王永凯, 余小霞, 等. 石墨烯纳米片的制备和表征[J]. 化工新型材料, 2013, (7): 128-130.
|
|
Guo X Q, Wang Y K, Yu X X, et al. Preparation and characterization of graphene nanosheets[J]. New Chemical Materials, 2013, (7): 128-130.
|