化工学报 ›› 2020, Vol. 71 ›› Issue (7): 2993-2999.DOI: 10.11949/0438-1157.20200181
收稿日期:
2020-02-25
修回日期:
2020-04-24
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
董宏光
作者简介:
何莉(1993—),女,硕士研究生,基金资助:
Li HE(),Xiong ZOU,Haotian YE,Xiangqin LI,Hongguang DONG()
Received:
2020-02-25
Revised:
2020-04-24
Online:
2020-07-05
Published:
2020-07-05
Contact:
Hongguang DONG
摘要:
乙二醇可从含芳烃组分油品中选择性萃取酚类,为支撑焦化含酚油中的酚类化合物萃取分离新工艺开发,针对其组分特点,在现有相平衡数据基础上选定代表物,利用液液平衡釜法测出常压下303.15、313.15和323.15 K时邻甲酚-间二甲苯-乙二醇体系液液相平衡数据,并利用Othmer-Tobias方程、Hand方程、Bachman方程分别进行实验数据可靠性检验,其线性相关系数的平方均大于0.99。同时分别用NRTL和UNIQUAC活度系数模型对实验数据进行关联,回归得到不同温度下的模型参数,模型计算值与实验数据对比后发现其均方根偏差小于1.8%,说明NRTL和UNIQUAC模型均可较好地描述该三元体系相平衡行为。
中图分类号:
何莉, 邹雄, 叶昊天, 李香琴, 董宏光. 邻甲酚-间二甲苯-乙二醇液液平衡数据的测定与关联[J]. 化工学报, 2020, 71(7): 2993-2999.
Li HE, Xiong ZOU, Haotian YE, Xiangqin LI, Hongguang DONG. Measurement and correlation of liquid-liquid equilibrium data for o-cresol-m-xylene-ethylene glycol[J]. CIESC Journal, 2020, 71(7): 2993-2999.
T/K | Raffinate phase | Extraction phase | D | S | ||||
---|---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w1 | w2 | w3 | |||
303.15 | 0.9852 | 0.0140 | 0.0008 | 0.0241 | 0.0874 | 0.8885 | 6.24 | 255.21 |
0.9473 | 0.0504 | 0.0022 | 0.0548 | 0.2165 | 0.7287 | 4.30 | 74.26 | |
0.9175 | 0.0786 | 0.0039 | 0.0862 | 0.3168 | 0.5969 | 4.03 | 42.90 | |
0.8903 | 0.1018 | 0.0079 | 0.1129 | 0.3416 | 0.5455 | 3.36 | 26.46 | |
0.8574 | 0.1293 | 0.0133 | 0.1468 | 0.3651 | 0.4881 | 2.82 | 16.49 | |
0.8272 | 0.1512 | 0.0215 | 0.2005 | 0.3909 | 0.4086 | 2.59 | 10.67 | |
0.7614 | 0.2010 | 0.0376 | 0.2888 | 0.4103 | 0.3009 | 2.04 | 5.38 | |
0.7143 | 0.2331 | 0.0526 | 0.3399 | 0.4151 | 0.2451 | 1.78 | 3.74 | |
313.15 | 0.9752 | 0.0246 | 0.0002 | 0.0315 | 0.0953 | 0.8732 | 3.87 | 119.93 |
0.9315 | 0.0668 | 0.0017 | 0.0607 | 0.2215 | 0.7177 | 3.32 | 50.89 | |
0.9095 | 0.0850 | 0.0055 | 0.0994 | 0.3052 | 0.5954 | 3.59 | 32.85 | |
0.8763 | 0.1154 | 0.0083 | 0.1176 | 0.3335 | 0.5489 | 2.89 | 21.53 | |
0.8473 | 0.1373 | 0.0154 | 0.1509 | 0.3583 | 0.4908 | 2.61 | 14.65 | |
0.8120 | 0.1655 | 0.0225 | 0.2127 | 0.3770 | 0.4104 | 2.28 | 8.70 | |
0.7386 | 0.2137 | 0.0478 | 0.3019 | 0.3979 | 0.3002 | 1.86 | 4.56 | |
0.6991 | 0.2403 | 0.0607 | 0.3514 | 0.4017 | 0.2470 | 1.67 | 3.33 | |
323.15 | 0.9689 | 0.0305 | 0.0006 | 0.0324 | 0.0940 | 0.8735 | 3.08 | 92.16 |
0.9168 | 0.0809 | 0.0024 | 0.0640 | 0.2221 | 0.7140 | 2.75 | 39.33 | |
0.8785 | 0.1115 | 0.0100 | 0.1069 | 0.2926 | 0.6006 | 2.62 | 21.57 | |
0.8493 | 0.1355 | 0.0152 | 0.1255 | 0.3248 | 0.5498 | 2.40 | 16.22 | |
0.8172 | 0.1529 | 0.0298 | 0.1606 | 0.3461 | 0.4933 | 2.26 | 11.52 | |
0.7755 | 0.1853 | 0.0392 | 0.2255 | 0.3797 | 0.3948 | 2.05 | 7.05 | |
0.7202 | 0.2215 | 0.0583 | 0.3071 | 0.3907 | 0.3023 | 1.76 | 4.14 | |
0.6782 | 0.2477 | 0.0741 | 0.3592 | 0.3921 | 0.2487 | 1.58 | 2.99 |
表1 间二甲苯(1)-邻甲酚(2)-乙二醇(3)液液相平衡数据
Table 1 Liquid-liquid equilibrium data of m-xylene (1) -o-cresol (2) -ethylene glycol (3)
T/K | Raffinate phase | Extraction phase | D | S | ||||
---|---|---|---|---|---|---|---|---|
w1 | w2 | w3 | w1 | w2 | w3 | |||
303.15 | 0.9852 | 0.0140 | 0.0008 | 0.0241 | 0.0874 | 0.8885 | 6.24 | 255.21 |
0.9473 | 0.0504 | 0.0022 | 0.0548 | 0.2165 | 0.7287 | 4.30 | 74.26 | |
0.9175 | 0.0786 | 0.0039 | 0.0862 | 0.3168 | 0.5969 | 4.03 | 42.90 | |
0.8903 | 0.1018 | 0.0079 | 0.1129 | 0.3416 | 0.5455 | 3.36 | 26.46 | |
0.8574 | 0.1293 | 0.0133 | 0.1468 | 0.3651 | 0.4881 | 2.82 | 16.49 | |
0.8272 | 0.1512 | 0.0215 | 0.2005 | 0.3909 | 0.4086 | 2.59 | 10.67 | |
0.7614 | 0.2010 | 0.0376 | 0.2888 | 0.4103 | 0.3009 | 2.04 | 5.38 | |
0.7143 | 0.2331 | 0.0526 | 0.3399 | 0.4151 | 0.2451 | 1.78 | 3.74 | |
313.15 | 0.9752 | 0.0246 | 0.0002 | 0.0315 | 0.0953 | 0.8732 | 3.87 | 119.93 |
0.9315 | 0.0668 | 0.0017 | 0.0607 | 0.2215 | 0.7177 | 3.32 | 50.89 | |
0.9095 | 0.0850 | 0.0055 | 0.0994 | 0.3052 | 0.5954 | 3.59 | 32.85 | |
0.8763 | 0.1154 | 0.0083 | 0.1176 | 0.3335 | 0.5489 | 2.89 | 21.53 | |
0.8473 | 0.1373 | 0.0154 | 0.1509 | 0.3583 | 0.4908 | 2.61 | 14.65 | |
0.8120 | 0.1655 | 0.0225 | 0.2127 | 0.3770 | 0.4104 | 2.28 | 8.70 | |
0.7386 | 0.2137 | 0.0478 | 0.3019 | 0.3979 | 0.3002 | 1.86 | 4.56 | |
0.6991 | 0.2403 | 0.0607 | 0.3514 | 0.4017 | 0.2470 | 1.67 | 3.33 | |
323.15 | 0.9689 | 0.0305 | 0.0006 | 0.0324 | 0.0940 | 0.8735 | 3.08 | 92.16 |
0.9168 | 0.0809 | 0.0024 | 0.0640 | 0.2221 | 0.7140 | 2.75 | 39.33 | |
0.8785 | 0.1115 | 0.0100 | 0.1069 | 0.2926 | 0.6006 | 2.62 | 21.57 | |
0.8493 | 0.1355 | 0.0152 | 0.1255 | 0.3248 | 0.5498 | 2.40 | 16.22 | |
0.8172 | 0.1529 | 0.0298 | 0.1606 | 0.3461 | 0.4933 | 2.26 | 11.52 | |
0.7755 | 0.1853 | 0.0392 | 0.2255 | 0.3797 | 0.3948 | 2.05 | 7.05 | |
0.7202 | 0.2215 | 0.0583 | 0.3071 | 0.3907 | 0.3023 | 1.76 | 4.14 | |
0.6782 | 0.2477 | 0.0741 | 0.3592 | 0.3921 | 0.2487 | 1.58 | 2.99 |
T/K | Othmer-Tobias | Hand | Bachman | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | R2 | p | q | R2 | m | n | R2 | |
303.15 | 1.9097 | 0.9707 | 0.9919 | 1.4979 | 0.9023 | 0.9958 | –0.1580 | 1.1542 | 0.9991 |
313.15 | 1.9441 | 1.0660 | 0.9927 | 1.5678 | 1.0181 | 0.9913 | –0.1710 | 1.1587 | 0.9987 |
323.15 | 1.8288 | 1.1228 | 0.9909 | 1.5236 | 1.0951 | 0.9983 | –0.1928 | 1.1648 | 0.9963 |
表2 Othmer-Tobias、Hand和Bachman方程参数
Table 2 Parameters for Othmer-Tobias, Hand and Bachman equations
T/K | Othmer-Tobias | Hand | Bachman | ||||||
---|---|---|---|---|---|---|---|---|---|
A | B | R2 | p | q | R2 | m | n | R2 | |
303.15 | 1.9097 | 0.9707 | 0.9919 | 1.4979 | 0.9023 | 0.9958 | –0.1580 | 1.1542 | 0.9991 |
313.15 | 1.9441 | 1.0660 | 0.9927 | 1.5678 | 1.0181 | 0.9913 | –0.1710 | 1.1587 | 0.9987 |
323.15 | 1.8288 | 1.1228 | 0.9909 | 1.5236 | 1.0951 | 0.9983 | –0.1928 | 1.1648 | 0.9963 |
T/K | i-j | NRTL | RMSD/% | UNIQUAC | RMSD/% | |||
---|---|---|---|---|---|---|---|---|
(gij-gii)/(J·mol-1) | (gji-gjj)/(J·mol-1) | αij | (uij-uii)/(J·mol-1) | (uji-ujj)/(J·mol-1) | ||||
303.15 | 1-2 | –1992.11 | 2130.65 | 0.3 | 0.988 | –3110.95 | 1641.63 | 1.132 |
1-3 | 14801.29 | 9584.97 | 0.3 | –7382.30 | –1093.76 | |||
2-3 | –603.83 | –3173.88 | 0.47 | 1492.72 | –1575.74 | |||
313.15 | 1-2 | –3591.05 | 2500.81 | 0.3 | 1.150 | –2147.94 | 1278.70 | 1.031 |
1-3 | 16835.85 | 9471.36 | 0.3 | –38966.86 | –831.95 | |||
2-3 | –126.26 | –4554.05 | 0.47 | 1879.11 | –2308.78 | |||
323.15 | 1-2 | –3619.17 | 1718.88 | 0.3 | 1.728 | –2006.43 | 1259.56 | 1.579 |
1-3 | 14632.64 | 9405.78 | 0.3 | –34919.17 | –872.03 | |||
2-3 | –306.42 | –4220.63 | 0.47 | 2038.69 | –2885.14 |
表3 间二甲苯(1)-邻甲酚(2)-乙二醇(3)体系二元交互作用参数
Table 3 Binary interaction parameters of m-xylene (1) -o-cresol (2) -ethylene glycol (3) system
T/K | i-j | NRTL | RMSD/% | UNIQUAC | RMSD/% | |||
---|---|---|---|---|---|---|---|---|
(gij-gii)/(J·mol-1) | (gji-gjj)/(J·mol-1) | αij | (uij-uii)/(J·mol-1) | (uji-ujj)/(J·mol-1) | ||||
303.15 | 1-2 | –1992.11 | 2130.65 | 0.3 | 0.988 | –3110.95 | 1641.63 | 1.132 |
1-3 | 14801.29 | 9584.97 | 0.3 | –7382.30 | –1093.76 | |||
2-3 | –603.83 | –3173.88 | 0.47 | 1492.72 | –1575.74 | |||
313.15 | 1-2 | –3591.05 | 2500.81 | 0.3 | 1.150 | –2147.94 | 1278.70 | 1.031 |
1-3 | 16835.85 | 9471.36 | 0.3 | –38966.86 | –831.95 | |||
2-3 | –126.26 | –4554.05 | 0.47 | 1879.11 | –2308.78 | |||
323.15 | 1-2 | –3619.17 | 1718.88 | 0.3 | 1.728 | –2006.43 | 1259.56 | 1.579 |
1-3 | 14632.64 | 9405.78 | 0.3 | –34919.17 | –872.03 | |||
2-3 | –306.42 | –4220.63 | 0.47 | 2038.69 | –2885.14 |
1 | 战风涛, 吕志凤, 王洛秋, 等. 催化柴油中的酚类化合物及其对柴油安定性的影响[J]. 燃料化学学报, 2000, 28(1): 59-62. |
Zhan F T, Lu Z F, Wang L Q, et al. Identification of phenolic compounds in LCOs and their effects on stability of diesels[J]. Journal of Fuel Chemistry and Technology, 2000, 28(1): 59-62. | |
2 | 韩冬雪, 邸慧双, 宫红, 等. 焦化柴油中酚类化合物的分离分析[J]. 当代化工, 2015, 44(11): 2528-2531. |
Han D X, Di H S, Gong H, et al. Analysis of phenolic compounds in coker diesel[J]. Contemporary Chemical Industry, 2015, 44(11): 2528-2531. | |
3 | 刘兴坤, 张香兰, 刘潜, 等. 正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联[J]. 高校化学工程学报, 2018, 32(2): 275-279. |
Liu X K, Zhang X L, Liu Q, et al. Determination and correlation of liquid equilibrium of the n-dodecane-toluene-phenol ternary system[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(2): 275-279. | |
4 | 任洪凯, 邓文安, 李传, 等. 中/低温煤焦油酚类化合物的组成研究[J]. 煤炭转化, 2013, 36(2): 67-70. |
Ren H K, Deng W A, Li C, et al. Study on the composition of phenolic compounds in middle/low temperature coal tar[J]. Coal Conversion, 2013, 36(2): 67-70. | |
5 | Yao C, Hou Y, Ren S, et al. Ternary phase behavior of phenol + toluene + zwitterionic alkaloids for separating phenols from oil mixtures via forming deep eutectic solvents[J]. Fluid Phase Equilibria, 2017, 448: 116-122. |
6 | Jiao T, Li C, Zhuang X, et al. The new liquid-liquid extraction method for separation of phenolic compounds from coal tar[J]. Chemical Engineering Journal, 2015, 266: 148-155. |
7 | Jiao T, Qin X, Zhang H, et al. Separation of phenol and pyridine from coal tar via liquid–liquid extraction using deep eutectic solvents[J]. Chemical Engineering Research and Design, 2019, 145: 112-121. |
8 | Schlosberg R H, Scouten C G. Removal of phenols from phenol-containing streams: US4256568[P]. 1981-3-17. |
9 | 文峰. 焦油萃取提酚新工艺的开发[J]. 上海化工, 2017, 42(3): 20-23. |
Wen F. Development of a new technology for extracting phenol from coal tar[J]. Shanghai Chemical Industry, 2017, 42(3): 20-23. | |
10 | Gai H, Qiao L, Zhong C, et al. A solvent based separation method for phenolic compounds from low-temperature coal tar[J]. Journal of Cleaner Production, 2019, 223: 1-11. |
11 | 刘继东, 刘爽, 吕建华, 等. 从含酚馏分油中萃取酚的溶剂选择及萃取条件研究[J]. 石油天然气与化工, 2017, 46(4): 30-34. |
Liu J D, Liu S, Lv J H, et al. Study on solvent selection and extraction conditions of extracting phenolic compounds from distillate oil containing phenol[J]. Chemical Engineering of Oil & Gas, 2017, 46(4): 30-34. | |
12 | Meng H, Ge C T, Ren N N, et al. Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof[J]. Industrial & Engineering Chemistry Research, 2014, 53(1): 355-362. |
13 | Semeniuk B. Liquid-liquid equilibria in the ternary systems of ethanediol with phenol and an arene[J]. Fluid Phase Equilibria, 1996, 115(1/2): 193-204. |
14 | Dai F, Xin K, Song Y, et al. Liquid-liquid equilibria for the extraction of phenols from alkane using ethylene glycol[J]. Fluid Phase Equilibria, 2016, 419: 50-56. |
15 | Liu X, Zhang X. Solvent screening and liquid-liquid measurement for extraction of phenols from aromatic hydrocarbon mixtures[J]. The Journal of Chemical Thermodynamics, 2019, 129: 12-21. |
16 | 张海永, 刘潜, 刘兴坤, 等. 低温煤焦油中正十二烷-甲苯-苯酚的相平衡及分离[J]. 化工学报, 2018, 69(8): 3479-3487. |
Zhang H Y, Liu Q, Liu X K, et al. Phase equilibrium and separation of n-dodecane-toluene-phenol in low temperature coal tar[J]. CIESC Journal, 2018, 69(8): 3479-3487. | |
17 | 陈赟, 吕冉, 熊康宁, 等. 甲基异丙基甲酮-苯酚-对苯二酚-水的液液相平衡数据测定, 模型关联及萃取过程模拟[J]. 化工学报, 2018, 69(4): 1299-1306. |
Chen Y, Lü R, Xiong K N, et al. Experimental determination, thermodynamic modeling and process simulation of methyl isopropyl ketone-phenol-hydroquinone-water quaternary systems[J]. CIESC Journal, 2018, 69(4): 1299-1306. | |
18 | 杨楚芬, 钱宇, 章莉娟, 等. 甲基异丁基酮-水-苯酚三元物系液液相平衡数据的测定与关联[J]. 化工学报, 2007, 58(4): 805-809. |
Yang C F, Qian Y, Zhang L J, et al. Measurement and correlation of liquid-liquid equilibrium data for methyl isobutyl ketone-water-phenol ternary system[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 805-809. | |
19 | 冯艺荣, 盖恒军, 郭凯, 等. 甲基戊烯酮-水-邻苯二酚三元物系液液相平衡数据的测定与关联[J]. 化工学报, 2017, 68(3): 848-853. |
Feng Y R, Gai H J, Guo K, et al. Measurement and correlation of liquid-liquid equilibrium data for mesityl oxide-water-catechol ternary system[J]. CIESC Journal, 2017, 68(3): 848-853. | |
20 | 盖恒军, 国洪跃, 宋红兵. 甲基戊烯酮-水-苯酚三元物系液液相平衡数据的测定与关联[J]. 高校化学工程学报, 2015, 29(6): 1320-1324. |
Gai H J, Guo H Y, Song H B. Measurement and correlation of liquid-liquid equilibrium data of mesityl oxide-water-phenol ternary system[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(6): 1320-1324. | |
21 | Luo L, Liu D, Li L, et al. Measurements and thermodynamic modeling of liquid-liquid equilibria in ternary system 2-methoxy-2-methylpropane + p-cresol + water[J]. Chinese Journal of Chemical Engineering, 2016, 24(3): 360-364. |
22 | Chen Y, Zhou S, Chen H, et al. Extraction of o-, m- and p-cresol from aqueous solution with methyl isopropyl ketone: equilibrium, correlations, and COSMO-RS predictions[J]. The Journal of Chemical Thermodynamics, 2017, 115: 180-190. |
23 | Zhou S, Xiong K, Li L, et al. Liquid-liquid equilibrium for methyl butyl ketone + o-, m-, p-cresol + water ternary systems and COSMO-SAC predictions[J]. The Journal of Chemical Thermodynamics, 2018, 127: 17-24. |
24 | Zhou S, Liao M, Liu D, et al. Liquid–liquid equilibrium for the ternary systems methyl tert-butyl ketone + o-, m-, p-cresol + water at (298.2, 313.2, and 323.2) K[J]. Journal of Chemical & Engineering Data, 2017, 62(7): 1929-1936. |
25 | Othmer D, Tobias P. Liquid-liquid extraction data — the line correlation[J]. Industrial & Engineering Chemistry, 1942, 34(6): 693-696. |
26 | Hand D B. Dineric distribution[J]. The Journal of Physical Chemistry, 1929, 34(9): 1961-2000. |
27 | Bachman I. Tie lines in ternary liquid systems[J]. Industrial & Engineering Chemistry Analytical Edition, 1940, 12(1): 38-39. |
28 | Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
29 | Fredenslund A, Jones R L, Prausnitz J M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE Journal, 1975, 21(6): 1086-1099. |
30 | Ma S, Yu Q, Hou Y, et al. Screening monoethanolamine as solvent to extract phenols from alkane[J]. Energy & Fuels, 2017, 31(11): 12997-13009. |
31 | Lv Y, Ding W, Liang L, et al. Liquid–liquid equilibrium study in the n-heptane + phenol + sulfolane ternary system[J]. Russian Journal of Physical Chemistry A, 2018, 92(11): 2124-2127. |
32 | Zhou S, Li L, Wang Y, et al. Measurement, correlation and COSMO-SAC prediction of liquid-liquid equilibrium for the ternary systems, mesityl oxide + o-, m-, p-cresol + water, at 333.2 K and 353.2 K[J]. Fluid Phase Equilibria, 2017, 440: 45-53. |
33 | Mohsen-Nia M, Paiker I. Ternary and quaternary liquid + liquid equilibria for systems of (water + toluene + m-xylene + phenol) [J]. Journal of Chemical & Engineering Data, 2007, 52(1): 180-183. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[7] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[10] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[13] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[14] | 李木金, 胡松, 施德磐, 赵鹏, 高瑞, 李进龙. 环氧丁烷尾气溶剂吸收及精制工艺[J]. 化工学报, 2023, 74(4): 1607-1618. |
[15] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 501
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||