化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5461-5469.DOI: 10.11949/0438-1157.20200465
收稿日期:
2020-05-05
修回日期:
2020-09-18
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
饶中浩
作者简介:
赵佳腾(1990—),男,博士,讲师,基金资助:
ZHAO Jiateng(),WANG Zengpeng,DAI Yucheng,LIU Changhui,RAO Zhonghao()
Received:
2020-05-05
Revised:
2020-09-18
Online:
2020-12-05
Published:
2020-12-05
Contact:
RAO Zhonghao
摘要:
针对石墨烯/水纳米流体的分散不稳定问题,采用化学方法制备了不含表面活性剂的改性石墨烯/水两亲性纳米流体,研究了以改性石墨烯/水两亲性纳米流体为工质的太阳重力热管在不同加热功率、安装角度和浓度下的热性能。结果表明,与去离子水相比,两亲性纳米流体可以降低热管的启动温度。在实验加热功率范围内,当加热功率相对较小时,两亲性纳米流体热管的热阻明显低于去离子水;随着加热功率的增加,热阻差异可以忽略。当安装角度相对较小时,其对蒸发段传热能力影响较大。当加热功率为20 W,纳米流体质量分数从0.1%增加到0.6%时,蒸发段传热系数下降了54.7%;当加热功率为40 W,纳米流体质量分数从0.1%增加到0.6%时,蒸发段传热系数下降了48.9%。
中图分类号:
赵佳腾,王增鹏,戴宇成,刘昌会,饶中浩. 两亲性纳米流体太阳能重力热管传热性能研究[J]. 化工学报, 2020, 71(12): 5461-5469.
ZHAO Jiateng,WANG Zengpeng,DAI Yucheng,LIU Changhui,RAO Zhonghao. Research on heat transfer performance of amphiphilic nanofluid solar gravity heat pipe[J]. CIESC Journal, 2020, 71(12): 5461-5469.
1 | Ghaderian J, Sidik N A C, Kasaeian A, et al. Performance of copper oxide/distilled water nanofluid in evacuated tube solar collector (ETSC) water heater with internal coil under thermosyphon system circulations[J]. Applied Thermal Engineering, 2017, 121: 520-536. |
2 | 田富中, 辛公明, 亓海青, 等. 交叉齿内螺纹重力热管强化传热特性[J]. 工程热物理学报, 2014, 35(5): 927-930. |
Tian F Z, Xin G M, Qi H Q, et al. Heat transfer characteristic of cross internal helical microfin[J]. Journal of Engineering Thermophysics, 2014, 35(5): 927-930. | |
3 | 马奕新, 金宇, 张虎, 等. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601. |
Ma Y X, Jin Y, Zhang H, et al. Experimental study on heat transfer performance of finned gravity heat pipe[J]. CIESC Journal, 2020, 71(2): 594-601. | |
4 | 何曙, 夏再忠, 王如竹. 一种新型重力热管传热性能研究[J]. 工程热物理学报, 2009, 30(5): 834-836. |
He S, Xia Z Z, Wang R Z. Heat transfer characteristic of an innovative gravity heat pipe[J]. Journal of Engineering Thermophysics, 2009, 30(5): 834-836. | |
5 | Masoud R, Kayvan A, Simin J. Thermal characterisitics of a resurfaced condenser and evaporator closed two-phase thermosyphon[J]. International Communications in Heat and Mass Transfer, 2010, 37(6): 703-710. |
6 | 李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. |
Li T L, Cen J W, Huang W B, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. | |
7 | 杨雪飞. 改性纳米流体的相变换热特性及其在重力热管中的应用[D]. 上海: 上海交通大学, 2011. |
Yang X F. Investigation of phase-changing heat transfer characteristics of functionalized nanofluid and its application in gravity-assisted heat pipes[D]. Shanghai: Shanghai Jiao Tong University, 2011. | |
8 | Asirvatham L G, Wongwises S, Babu J. Heat transfer performance of a glass thermosyphon using graphene-acetone nanofluid[J]. Journal of Heat Transfer, 2015, 137: 111502. |
9 | Zhao S, Xu G, Wang N, et al. Experimental study on the thermal start-up performance of the graphene/water nanofluid-enhanced solar gravity heat pipe[J]. Nanomaterials, 2018, 8: 72. |
10 | Moraveji M, Razvarz S. Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance[J]. International Communications in Heat and Mass Transfer, 2012, 39: 1444-1448. |
11 | Ghanbarpour M, Khodabandeh R, Vafai K. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid[J]. Heat and Mass Transfer, 2016, 53: 973-983. |
12 | Kiseev V, Sazhin O. Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid[J]. International Journal of Heat and Mass Transfer, 2019, 132: 557-564. |
13 | Nazari M A, Ghasempour R, Ahmadi M H, et al. Experimental investigation of graphene oxide nanofluid on heat transfer enhancement of pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2018, 91: 90-94. |
14 | Mehrali M, Sadeghinezhad E, Azizian R, et al. Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe[J]. Energy Conversion and Management, 2016, 118: 459-473. |
15 | Parametthanuwat T, Rittidech S, Pattiya A. A correlation to predict heat-transfer rates of a two-phase closed thermosyphon (TPCT) using silver nanofluid at normal operating conditions[J]. International Journal of Heat and Mass Transfer, 2010, 53: 4960-4965. |
16 | 周根明, 周少华, 赵忠超, 等. 纳米流体重力热管启动性能的试验研究[J]. 江苏大学学报(自然科学版), 2013, 27(4): 376-380. |
Zhou G M, Zhou S H, Zhao Z C, et al. Experimental study of the start-up process of gravity heat pipes filled with nanofluids[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2013, 27(4): 376-380. | |
17 | Gürü M, Sözen A, Karakaya U, et al. Influences of bentonite-deionized water nanofluid utilization at different concentrations on heat pipe performance: an experimental study[J]. Applied Thermal Engineering, 2019, 148: 632-640. |
18 | Menlik T, Sozen A, Gürü M, et al. Heat transfer enhancement using MgO/water nanofluid in heat pipe[J]. Journal of the Energy Institute, 2015, 88: 247-257. |
19 | Sözen A, Gürü M, Khanlari A, et al. Experimental and numerical study on enhancement of heat transfer characteristics of a heat pipe utilizing aqueous clinoptilolite nanofluid[J]. Applied Thermal Engineering, 2019, 160: 114001. |
20 | Eidan A A, Al Sahlani A, Ahmed A Q, et al. Improving the performance of heat pipe-evacuated tube solar collector experimentally by using Al2O3 and CuO/acetone nanofluids[J]. Solar Energy, 2018, 173: 780-788. |
21 | Liu Z H, Hu R L, Lu L, et al. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector[J]. Energy Conversion and Management, 2013, 73: 135-143. |
22 | Moradgholi M, Nowee S M, Farzaneh A. Experimental study of using Al2O3/methanol nanofluid in a two phase closed thermosyphon (TPCT) array as a novel photovoltaic-thermal system[J]. Solar Energy, 2018, 164: 243-250. |
23 | Dehaj M S, Mohiabadi M Z. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137: 2061-2072. |
24 | Ozsoy A, Corumlu V. Thermal performance of a thermosyphon heat pipe evacuated tube solar collector using silver-water nanofluid for commercial applications[J]. Renewable Energy, 2018, 122: 26-34. |
25 | Ramezanizadeh M, Alhuyi N M, Ahmadi M H, et al. Application of nanofluids in thermosyphons: a review[J]. Journal of Molecular Liquids, 2018, 272: 395-402. |
26 | Nazari M A, Ahmadi M H, Sadeghzadeh M, et al. A review on application of nanofluid in various types of heat pipes[J]. Journal of Central South University, 2019, 26: 1021-1041. |
27 | Liu Z H, Li Y Y. A new frontier of nanofluid research—application of nanofluids in heat pipes[J]. International Journal of Heat and Mass Transfer, 2012, 55: 6786-6797. |
28 | Tharayil T, Asirvatham L G, Daub M J, et al. Entropy generation analysis of a miniature loop heat pipe with grapheme-water nanofluid—thermodynamics model and experimental study[J]. International Journal of Heat and Mass Transfer, 2017, 106: 407-421. |
29 | Soleymaniha M, Amiri A, Shanbedi M, et al. Water-based graphene quantum dots dispersion as a high-performance long-term stable nanofluid for two-phased closed thermosyphons[J]. International Communications in Heat and Mass Transfer, 2018, 95: 147-154. |
30 | Azizi M, Hosseini M, Zafarnak S, et al. Experimental analysis of thermal performance in a two-phase closed thermosiphon using graphene/water nanofluid[J]. Industrial & Engineering Chemistry Research, 2013, 52: 10015-10021. |
31 | Liu C H, Fang H, Liu X J, et al. Novel silica filled deep eutectic solvent based nanofluids for energy transportation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 20159-20169. |
32 | Liu C H, Fang H, Qiao Y, et al. Properties and heat transfer mechanistic study of glycerol/choline chloride deep eutectic solvents based nanofluids[J]. International Journal of Heat and Mass Transfer, 2019, 138: 690-698. |
33 | Bakthavatchalam B, Habib K, Saidur R, et al. Influence of solvents on the enhancement of thermophysical properties and stability of multi-walled carbon nanotubes nanofluid[J]. Nanotechnology, 2020, 31: 235402. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[5] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[6] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[7] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[13] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||